Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem4.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
2 |
|
etransclem4.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
3 |
|
etransclem4.M |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
4 |
|
etransclem4.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
5 |
|
etransclem4.h |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
6 |
|
etransclem4.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
8 |
|
cnex |
⊢ ℂ ∈ V |
9 |
8
|
ssex |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
10 |
|
mptexg |
⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) |
11 |
1 9 10
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) |
13 |
5
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ V ) → ( 𝐻 ‘ 𝑗 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
14 |
7 12 13
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐻 ‘ 𝑗 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
15 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ V ) |
16 |
14 15
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
17 |
16
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
18 |
17
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) = ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
19 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
20 |
3 19
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
22 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ ℂ ) |
24 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
25 |
24
|
zcnd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℂ ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℂ ) |
27 |
23 26
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 − 𝑗 ) ∈ ℂ ) |
28 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
29 |
2 28
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
30 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
31 |
29 30
|
ifcld |
⊢ ( 𝜑 → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
33 |
27 32
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ ) |
34 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝑥 − 𝑗 ) = ( 𝑥 − 0 ) ) |
35 |
|
iftrue |
⊢ ( 𝑗 = 0 → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) = ( 𝑃 − 1 ) ) |
36 |
34 35
|
oveq12d |
⊢ ( 𝑗 = 0 → ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑥 − 0 ) ↑ ( 𝑃 − 1 ) ) ) |
37 |
21 33 36
|
fprod1p |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( ( 𝑥 − 0 ) ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
38 |
22
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 − 0 ) = 𝑥 ) |
39 |
38
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 − 0 ) ↑ ( 𝑃 − 1 ) ) = ( 𝑥 ↑ ( 𝑃 − 1 ) ) ) |
40 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
41 |
40
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) |
42 |
41
|
a1i |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) ) |
43 |
|
0red |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 0 ∈ ℝ ) |
44 |
|
1red |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 1 ∈ ℝ ) |
45 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
46 |
45
|
zred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℝ ) |
47 |
|
0lt1 |
⊢ 0 < 1 |
48 |
47
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 0 < 1 ) |
49 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 1 ≤ 𝑗 ) |
50 |
43 44 46 48 49
|
ltletrd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 0 < 𝑗 ) |
51 |
50
|
gt0ne0d |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ≠ 0 ) |
52 |
51
|
neneqd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → ¬ 𝑗 = 0 ) |
53 |
52
|
iffalsed |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) = 𝑃 ) |
54 |
53
|
oveq2d |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) |
56 |
42 55
|
prodeq12rdv |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) |
58 |
39 57
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 − 0 ) ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) = ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
59 |
18 37 58
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) = ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) |
60 |
59
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐻 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
61 |
60 4 6
|
3eqtr4g |
⊢ ( 𝜑 → 𝐹 = 𝐸 ) |