| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem44.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 2 |  | etransclem44.a0 | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ≠  0 ) | 
						
							| 3 |  | etransclem44.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | etransclem44.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | etransclem44.ap | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  <  𝑃 ) | 
						
							| 6 |  | etransclem44.mp | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  <  𝑃 ) | 
						
							| 7 |  | etransclem44.f | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 8 |  | etransclem44.k | ⊢ 𝐾  =  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  𝐾  =  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑘 ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) ) | 
						
							| 12 |  | fzfi | ⊢ ( 0 ... 𝑀 )  ∈  Fin | 
						
							| 13 |  | fzfi | ⊢ ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) )  ∈  Fin | 
						
							| 14 |  | xpfi | ⊢ ( ( ( 0 ... 𝑀 )  ∈  Fin  ∧  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) )  ∈  Fin )  →  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∈  Fin ) | 
						
							| 15 | 12 13 14 | mp2an | ⊢ ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∈  Fin | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∈  Fin ) | 
						
							| 17 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 18 |  | fzssnn0 | ⊢ ( 0 ... 𝑀 )  ⊆  ℕ0 | 
						
							| 19 |  | xp1st | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 20 | 18 19 | sselid | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 22 | 17 21 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 23 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 25 |  | reopn | ⊢ ℝ  ∈  ( topGen ‘ ran  (,) ) | 
						
							| 26 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 27 | 25 26 | eleqtri | ⊢ ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 29 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 30 | 4 29 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 32 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 33 |  | xp2nd | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) | 
						
							| 34 |  | elfznn0 | ⊢ ( ( 2nd  ‘ 𝑘 )  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 37 | 21 | nn0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 38 | 21 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 39 | 24 28 31 32 7 36 37 38 | etransclem42 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 40 | 22 39 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℤ ) | 
						
							| 41 | 40 | zcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 42 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 43 | 3 42 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 44 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 46 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 47 | 3 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 48 | 30 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 49 | 47 48 | zmulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  ∈  ℤ ) | 
						
							| 50 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 51 | 30 50 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 52 | 51 | nn0zd | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 53 | 49 52 | zaddcld | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) )  ∈  ℤ ) | 
						
							| 54 | 51 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑃  −  1 ) ) | 
						
							| 55 | 30 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 56 | 3 55 | nn0mulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  ∈  ℕ0 ) | 
						
							| 57 | 56 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑀  ·  𝑃 ) ) | 
						
							| 58 | 51 | nn0red | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 59 | 49 | zred | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  ∈  ℝ ) | 
						
							| 60 | 58 59 | addge02d | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝑀  ·  𝑃 )  ↔  ( 𝑃  −  1 )  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) | 
						
							| 61 | 57 60 | mpbid | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ≤  ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) | 
						
							| 62 | 46 53 52 54 61 | elfzd | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) | 
						
							| 63 |  | opelxp | ⊢ ( 〈 0 ,  ( 𝑃  −  1 ) 〉  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ↔  ( 0  ∈  ( 0 ... 𝑀 )  ∧  ( 𝑃  −  1 )  ∈  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 64 | 45 62 63 | sylanbrc | ⊢ ( 𝜑  →  〈 0 ,  ( 𝑃  −  1 ) 〉  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉  →  ( 1st  ‘ 𝑘 )  =  ( 1st  ‘ 〈 0 ,  ( 𝑃  −  1 ) 〉 ) ) | 
						
							| 66 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 67 |  | ovex | ⊢ ( 𝑃  −  1 )  ∈  V | 
						
							| 68 |  | op1stg | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑃  −  1 )  ∈  V )  →  ( 1st  ‘ 〈 0 ,  ( 𝑃  −  1 ) 〉 )  =  0 ) | 
						
							| 69 | 66 67 68 | mp2an | ⊢ ( 1st  ‘ 〈 0 ,  ( 𝑃  −  1 ) 〉 )  =  0 | 
						
							| 70 | 65 69 | eqtrdi | ⊢ ( 𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉  →  ( 1st  ‘ 𝑘 )  =  0 ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( 𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 72 |  | fveq2 | ⊢ ( 𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉  →  ( 2nd  ‘ 𝑘 )  =  ( 2nd  ‘ 〈 0 ,  ( 𝑃  −  1 ) 〉 ) ) | 
						
							| 73 |  | op2ndg | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑃  −  1 )  ∈  V )  →  ( 2nd  ‘ 〈 0 ,  ( 𝑃  −  1 ) 〉 )  =  ( 𝑃  −  1 ) ) | 
						
							| 74 | 66 67 73 | mp2an | ⊢ ( 2nd  ‘ 〈 0 ,  ( 𝑃  −  1 ) 〉 )  =  ( 𝑃  −  1 ) | 
						
							| 75 | 72 74 | eqtrdi | ⊢ ( 𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉  →  ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 ) ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( 𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉  →  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) )  =  ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ) | 
						
							| 77 | 76 70 | fveq12d | ⊢ ( 𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  =  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) ) | 
						
							| 78 | 71 77 | oveq12d | ⊢ ( 𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  =  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) ) ) | 
						
							| 79 | 10 11 16 41 64 78 | fsumsplit1 | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  =  ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  +  Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) ) ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  +  Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 81 | 18 45 | sselid | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 82 | 1 81 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ∈  ℤ ) | 
						
							| 83 | 23 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 84 | 27 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 85 | 66 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 86 | 83 84 30 3 7 51 85 46 | etransclem42 | ⊢ ( 𝜑  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  ∈  ℤ ) | 
						
							| 87 | 82 86 | zmulcld | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  ∈  ℤ ) | 
						
							| 88 | 87 | zcnd | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  ∈  ℂ ) | 
						
							| 89 |  | difss | ⊢ ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ⊆  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) | 
						
							| 90 |  | ssfi | ⊢ ( ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∈  Fin  ∧  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ⊆  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ∈  Fin ) | 
						
							| 91 | 15 89 90 | mp2an | ⊢ ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ∈  Fin | 
						
							| 92 | 91 | a1i | ⊢ ( 𝜑  →  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ∈  Fin ) | 
						
							| 93 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  →  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 94 | 93 40 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℤ ) | 
						
							| 95 | 92 94 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℤ ) | 
						
							| 96 | 95 | zcnd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 97 | 51 | faccld | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℕ ) | 
						
							| 98 | 97 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 99 | 97 | nnne0d | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0 ) | 
						
							| 100 | 88 96 98 99 | divdird | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  +  Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  +  ( Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 101 | 9 80 100 | 3eqtrd | ⊢ ( 𝜑  →  𝐾  =  ( ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  +  ( Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 102 | 30 | nnne0d | ⊢ ( 𝜑  →  𝑃  ≠  0 ) | 
						
							| 103 | 82 | zcnd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ∈  ℂ ) | 
						
							| 104 | 86 | zcnd | ⊢ ( 𝜑  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  ∈  ℂ ) | 
						
							| 105 | 103 104 98 99 | divassd | ⊢ ( 𝜑  →  ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 106 |  | etransclem5 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦  −  𝑘 ) ↑ if ( 𝑘  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 107 |  | etransclem11 | ⊢ ( 𝑚  ∈  ℕ0  ↦  { 𝑑  ∈  ( ( 0 ... 𝑚 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( 𝑑 ‘ 𝑘 )  =  𝑚 } )  =  ( 𝑛  ∈  ℕ0  ↦  { 𝑐  ∈  ( ( 0 ... 𝑛 )  ↑m  ( 0 ... 𝑀 ) )  ∣  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( 𝑐 ‘ 𝑗 )  =  𝑛 } ) | 
						
							| 108 | 83 84 30 3 7 51 106 107 45 85 | etransclem37 | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) ) | 
						
							| 109 | 97 | nnzd | ⊢ ( 𝜑  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ ) | 
						
							| 110 |  | dvdsval2 | ⊢ ( ( ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ  ∧  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0  ∧  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  ∈  ℤ )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  ↔  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) ) | 
						
							| 111 | 109 99 86 110 | syl3anc | ⊢ ( 𝜑  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  ↔  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) ) | 
						
							| 112 | 108 111 | mpbid | ⊢ ( 𝜑  →  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 113 | 82 112 | zmulcld | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  ∈  ℤ ) | 
						
							| 114 | 105 113 | eqeltrd | ⊢ ( 𝜑  →  ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 115 | 93 41 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  ∈  ℂ ) | 
						
							| 116 | 92 98 115 99 | fsumdivc | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 117 | 22 | zcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) )  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 118 | 93 117 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 119 | 93 39 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 120 | 119 | zcnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 121 | 98 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 122 | 99 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0 ) | 
						
							| 123 | 118 120 121 122 | divassd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  =  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 124 | 93 22 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 125 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ℝ  ∈  { ℝ ,  ℂ } ) | 
						
							| 126 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ℝ  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) ) | 
						
							| 127 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  𝑃  ∈  ℕ ) | 
						
							| 128 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 129 | 93 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 130 | 129 35 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( 2nd  ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 131 | 129 19 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( 1st  ‘ 𝑘 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 132 | 93 37 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( 1st  ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 133 | 125 126 127 128 7 130 106 107 131 132 | etransclem37 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) ) | 
						
							| 134 | 109 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ ) | 
						
							| 135 |  | dvdsval2 | ⊢ ( ( ( ! ‘ ( 𝑃  −  1 ) )  ∈  ℤ  ∧  ( ! ‘ ( 𝑃  −  1 ) )  ≠  0  ∧  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ↔  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) ) | 
						
							| 136 | 134 122 119 135 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( ! ‘ ( 𝑃  −  1 ) )  ∥  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  ↔  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) ) | 
						
							| 137 | 133 136 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 138 | 124 137 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  ∈  ℤ ) | 
						
							| 139 | 123 138 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 140 | 92 139 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 141 | 116 140 | eqeltrd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) | 
						
							| 142 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 143 |  | zabscl | ⊢ ( ( 𝐴 ‘ 0 )  ∈  ℤ  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℤ ) | 
						
							| 144 | 82 143 | syl | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℤ ) | 
						
							| 145 |  | nn0abscl | ⊢ ( ( 𝐴 ‘ 0 )  ∈  ℤ  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℕ0 ) | 
						
							| 146 | 82 145 | syl | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℕ0 ) | 
						
							| 147 | 103 2 | absne0d | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≠  0 ) | 
						
							| 148 |  | elnnne0 | ⊢ ( ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℕ  ↔  ( ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℕ0  ∧  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≠  0 ) ) | 
						
							| 149 | 146 147 148 | sylanbrc | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℕ ) | 
						
							| 150 | 149 | nnge1d | ⊢ ( 𝜑  →  1  ≤  ( abs ‘ ( 𝐴 ‘ 0 ) ) ) | 
						
							| 151 |  | zltlem1 | ⊢ ( ( ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( ( abs ‘ ( 𝐴 ‘ 0 ) )  <  𝑃  ↔  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≤  ( 𝑃  −  1 ) ) ) | 
						
							| 152 | 144 48 151 | syl2anc | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴 ‘ 0 ) )  <  𝑃  ↔  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≤  ( 𝑃  −  1 ) ) ) | 
						
							| 153 | 5 152 | mpbid | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≤  ( 𝑃  −  1 ) ) | 
						
							| 154 | 142 52 144 150 153 | elfzd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ( 1 ... ( 𝑃  −  1 ) ) ) | 
						
							| 155 |  | fzm1ndvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ( 1 ... ( 𝑃  −  1 ) ) )  →  ¬  𝑃  ∥  ( abs ‘ ( 𝐴 ‘ 0 ) ) ) | 
						
							| 156 | 30 154 155 | syl2anc | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( abs ‘ ( 𝐴 ‘ 0 ) ) ) | 
						
							| 157 |  | dvdsabsb | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 𝐴 ‘ 0 )  ∈  ℤ )  →  ( 𝑃  ∥  ( 𝐴 ‘ 0 )  ↔  𝑃  ∥  ( abs ‘ ( 𝐴 ‘ 0 ) ) ) ) | 
						
							| 158 | 48 82 157 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( 𝐴 ‘ 0 )  ↔  𝑃  ∥  ( abs ‘ ( 𝐴 ‘ 0 ) ) ) ) | 
						
							| 159 | 156 158 | mtbird | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( 𝐴 ‘ 0 ) ) | 
						
							| 160 | 3 4 6 7 | etransclem41 | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 161 | 159 160 | jca | ⊢ ( 𝜑  →  ( ¬  𝑃  ∥  ( 𝐴 ‘ 0 )  ∧  ¬  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 162 |  | pm4.56 | ⊢ ( ( ¬  𝑃  ∥  ( 𝐴 ‘ 0 )  ∧  ¬  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  ↔  ¬  ( 𝑃  ∥  ( 𝐴 ‘ 0 )  ∨  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 163 | 161 162 | sylib | ⊢ ( 𝜑  →  ¬  ( 𝑃  ∥  ( 𝐴 ‘ 0 )  ∨  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 164 |  | euclemma | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴 ‘ 0 )  ∈  ℤ  ∧  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ )  →  ( 𝑃  ∥  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  ↔  ( 𝑃  ∥  ( 𝐴 ‘ 0 )  ∨  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) ) | 
						
							| 165 | 4 82 112 164 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  ↔  ( 𝑃  ∥  ( 𝐴 ‘ 0 )  ∨  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) ) | 
						
							| 166 | 163 165 | mtbird | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 167 | 105 | breq2d | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ↔  𝑃  ∥  ( ( 𝐴 ‘ 0 )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) ) | 
						
							| 168 | 166 167 | mtbird | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 169 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  𝑃  ∈  ℤ ) | 
						
							| 170 | 169 124 137 | 3jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ( 𝑃  ∈  ℤ  ∧  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ  ∧  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ ) ) | 
						
							| 171 |  | eldifn | ⊢ ( 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  →  ¬  𝑘  ∈  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) | 
						
							| 172 | 93 | adantr | ⊢ ( ( 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ∧  ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 ) )  →  𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 173 |  | 1st2nd2 | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  →  𝑘  =  〈 ( 1st  ‘ 𝑘 ) ,  ( 2nd  ‘ 𝑘 ) 〉 ) | 
						
							| 174 | 172 173 | syl | ⊢ ( ( 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ∧  ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 ) )  →  𝑘  =  〈 ( 1st  ‘ 𝑘 ) ,  ( 2nd  ‘ 𝑘 ) 〉 ) | 
						
							| 175 |  | simpr | ⊢ ( ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 )  →  ( 1st  ‘ 𝑘 )  =  0 ) | 
						
							| 176 |  | simpl | ⊢ ( ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 )  →  ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 ) ) | 
						
							| 177 | 175 176 | opeq12d | ⊢ ( ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 )  →  〈 ( 1st  ‘ 𝑘 ) ,  ( 2nd  ‘ 𝑘 ) 〉  =  〈 0 ,  ( 𝑃  −  1 ) 〉 ) | 
						
							| 178 | 177 | adantl | ⊢ ( ( 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ∧  ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 ) )  →  〈 ( 1st  ‘ 𝑘 ) ,  ( 2nd  ‘ 𝑘 ) 〉  =  〈 0 ,  ( 𝑃  −  1 ) 〉 ) | 
						
							| 179 | 174 178 | eqtrd | ⊢ ( ( 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ∧  ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 ) )  →  𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉 ) | 
						
							| 180 |  | velsn | ⊢ ( 𝑘  ∈  { 〈 0 ,  ( 𝑃  −  1 ) 〉 }  ↔  𝑘  =  〈 0 ,  ( 𝑃  −  1 ) 〉 ) | 
						
							| 181 | 179 180 | sylibr | ⊢ ( ( 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  ∧  ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 ) )  →  𝑘  ∈  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) | 
						
							| 182 | 171 181 | mtand | ⊢ ( 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } )  →  ¬  ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 ) ) | 
						
							| 183 | 182 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  ¬  ( ( 2nd  ‘ 𝑘 )  =  ( 𝑃  −  1 )  ∧  ( 1st  ‘ 𝑘 )  =  0 ) ) | 
						
							| 184 | 127 128 7 130 131 183 107 | etransclem38 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 185 |  | dvdsmultr2 | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ∈  ℤ  ∧  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  ∈  ℤ )  →  ( 𝑃  ∥  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  →  𝑃  ∥  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) ) | 
						
							| 186 | 170 184 185 | sylc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  𝑃  ∥  ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) ) | 
						
							| 187 | 186 123 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) )  →  𝑃  ∥  ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 188 | 92 48 139 187 | fsumdvds | ⊢ ( 𝜑  →  𝑃  ∥  Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 189 | 188 116 | breqtrrd | ⊢ ( 𝜑  →  𝑃  ∥  ( Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) ) | 
						
							| 190 | 48 102 114 141 168 189 | etransclem9 | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ‘ 0 )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 𝑃  −  1 ) ) ‘ 0 ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) )  +  ( Σ 𝑘  ∈  ( ( ( 0 ... 𝑀 )  ×  ( 0 ... ( ( 𝑀  ·  𝑃 )  +  ( 𝑃  −  1 ) ) ) )  ∖  { 〈 0 ,  ( 𝑃  −  1 ) 〉 } ) ( ( 𝐴 ‘ ( 1st  ‘ 𝑘 ) )  ·  ( ( ( ℝ  D𝑛  𝐹 ) ‘ ( 2nd  ‘ 𝑘 ) ) ‘ ( 1st  ‘ 𝑘 ) ) )  /  ( ! ‘ ( 𝑃  −  1 ) ) ) )  ≠  0 ) | 
						
							| 191 | 101 190 | eqnetrd | ⊢ ( 𝜑  →  𝐾  ≠  0 ) |