Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem46.q |
⊢ ( 𝜑 → 𝑄 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
2 |
|
etransclem46.qe0 |
⊢ ( 𝜑 → ( 𝑄 ‘ e ) = 0 ) |
3 |
|
etransclem46.a |
⊢ 𝐴 = ( coeff ‘ 𝑄 ) |
4 |
|
etransclem46.m |
⊢ 𝑀 = ( deg ‘ 𝑄 ) |
5 |
|
etransclem46.rex |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
6 |
|
etransclem46.s |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
7 |
|
etransclem46.x |
⊢ ( 𝜑 → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
8 |
|
etransclem46.p |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
9 |
|
etransclem46.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
10 |
|
etransclem46.l |
⊢ 𝐿 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) |
11 |
|
etransclem46.r |
⊢ 𝑅 = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) |
12 |
|
etransclem46.g |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
13 |
|
etransclem46.h |
⊢ 𝑂 = ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
14 |
10
|
a1i |
⊢ ( 𝜑 → 𝐿 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) ) |
15 |
13
|
oveq2i |
⊢ ( ℝ D 𝑂 ) = ( ℝ D ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ℝ D 𝑂 ) = ( ℝ D ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ℝ ∈ { ℝ , ℂ } ) |
18 |
|
ere |
⊢ e ∈ ℝ |
19 |
18
|
recni |
⊢ e ∈ ℂ |
20 |
19
|
a1i |
⊢ ( 𝑥 ∈ ℝ → e ∈ ℂ ) |
21 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
22 |
21
|
negcld |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℂ ) |
23 |
20 22
|
cxpcld |
⊢ ( 𝑥 ∈ ℝ → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
26 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 0 ... 𝑅 ) ∈ Fin ) |
27 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑅 ) → 𝑖 ∈ ℕ0 ) |
28 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ℝ ∈ { ℝ , ℂ } ) |
29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
30 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
31 |
1
|
eldifad |
⊢ ( 𝜑 → 𝑄 ∈ ( Poly ‘ ℤ ) ) |
32 |
|
dgrcl |
⊢ ( 𝑄 ∈ ( Poly ‘ ℤ ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
34 |
4 33
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
37 |
28 29 30 35 9 36
|
etransclem33 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
38 |
27 37
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
40 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑥 ∈ ℝ ) |
41 |
39 40
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) |
42 |
26 41
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) |
43 |
12
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
44 |
25 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
45 |
44 42
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
46 |
24 45
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
47 |
46
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
48 |
47
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ℝ ) → - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
49 |
6 7
|
dvdmsscn |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
50 |
49 8 9
|
etransclem8 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
51 |
50
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
52 |
24 51
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
53 |
52
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
54 |
53
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → - - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
55 |
54
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ℝ ) → - - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
56 |
18
|
a1i |
⊢ ( 𝑥 ∈ ℝ → e ∈ ℝ ) |
57 |
|
0re |
⊢ 0 ∈ ℝ |
58 |
|
epos |
⊢ 0 < e |
59 |
57 18 58
|
ltleii |
⊢ 0 ≤ e |
60 |
59
|
a1i |
⊢ ( 𝑥 ∈ ℝ → 0 ≤ e ) |
61 |
|
renegcl |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) |
62 |
56 60 61
|
recxpcld |
⊢ ( 𝑥 ∈ ℝ → ( e ↑𝑐 - 𝑥 ) ∈ ℝ ) |
63 |
62
|
renegcld |
⊢ ( 𝑥 ∈ ℝ → - ( e ↑𝑐 - 𝑥 ) ∈ ℝ ) |
64 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → - ( e ↑𝑐 - 𝑥 ) ∈ ℝ ) |
65 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
66 |
65
|
a1i |
⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
67 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
68 |
67
|
a1i |
⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
69 |
22
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → - 𝑥 ∈ ℂ ) |
70 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
71 |
70
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → - 1 ∈ ℝ ) |
72 |
19
|
a1i |
⊢ ( 𝑦 ∈ ℂ → e ∈ ℂ ) |
73 |
|
id |
⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) |
74 |
72 73
|
cxpcld |
⊢ ( 𝑦 ∈ ℂ → ( e ↑𝑐 𝑦 ) ∈ ℂ ) |
75 |
74
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → ( e ↑𝑐 𝑦 ) ∈ ℂ ) |
76 |
21
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
77 |
|
1red |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) |
78 |
66
|
dvmptid |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ 1 ) ) |
79 |
66 76 77 78
|
dvmptneg |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ - 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ - 1 ) ) |
80 |
|
epr |
⊢ e ∈ ℝ+ |
81 |
|
dvcxp2 |
⊢ ( e ∈ ℝ+ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( log ‘ e ) · ( e ↑𝑐 𝑦 ) ) ) ) |
82 |
80 81
|
ax-mp |
⊢ ( ℂ D ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( log ‘ e ) · ( e ↑𝑐 𝑦 ) ) ) |
83 |
|
loge |
⊢ ( log ‘ e ) = 1 |
84 |
83
|
oveq1i |
⊢ ( ( log ‘ e ) · ( e ↑𝑐 𝑦 ) ) = ( 1 · ( e ↑𝑐 𝑦 ) ) |
85 |
74
|
mulid2d |
⊢ ( 𝑦 ∈ ℂ → ( 1 · ( e ↑𝑐 𝑦 ) ) = ( e ↑𝑐 𝑦 ) ) |
86 |
84 85
|
syl5eq |
⊢ ( 𝑦 ∈ ℂ → ( ( log ‘ e ) · ( e ↑𝑐 𝑦 ) ) = ( e ↑𝑐 𝑦 ) ) |
87 |
86
|
mpteq2ia |
⊢ ( 𝑦 ∈ ℂ ↦ ( ( log ‘ e ) · ( e ↑𝑐 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) |
88 |
82 87
|
eqtri |
⊢ ( ℂ D ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) |
89 |
88
|
a1i |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ) |
90 |
|
oveq2 |
⊢ ( 𝑦 = - 𝑥 → ( e ↑𝑐 𝑦 ) = ( e ↑𝑐 - 𝑥 ) ) |
91 |
66 68 69 71 75 75 79 89 90 90
|
dvmptco |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( e ↑𝑐 - 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( e ↑𝑐 - 𝑥 ) · - 1 ) ) ) |
92 |
91
|
mptru |
⊢ ( ℝ D ( 𝑥 ∈ ℝ ↦ ( e ↑𝑐 - 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( e ↑𝑐 - 𝑥 ) · - 1 ) ) |
93 |
70
|
a1i |
⊢ ( 𝑥 ∈ ℝ → - 1 ∈ ℝ ) |
94 |
93
|
recnd |
⊢ ( 𝑥 ∈ ℝ → - 1 ∈ ℂ ) |
95 |
23 94
|
mulcomd |
⊢ ( 𝑥 ∈ ℝ → ( ( e ↑𝑐 - 𝑥 ) · - 1 ) = ( - 1 · ( e ↑𝑐 - 𝑥 ) ) ) |
96 |
23
|
mulm1d |
⊢ ( 𝑥 ∈ ℝ → ( - 1 · ( e ↑𝑐 - 𝑥 ) ) = - ( e ↑𝑐 - 𝑥 ) ) |
97 |
95 96
|
eqtrd |
⊢ ( 𝑥 ∈ ℝ → ( ( e ↑𝑐 - 𝑥 ) · - 1 ) = - ( e ↑𝑐 - 𝑥 ) ) |
98 |
97
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ ↦ ( ( e ↑𝑐 - 𝑥 ) · - 1 ) ) = ( 𝑥 ∈ ℝ ↦ - ( e ↑𝑐 - 𝑥 ) ) |
99 |
92 98
|
eqtri |
⊢ ( ℝ D ( 𝑥 ∈ ℝ ↦ ( e ↑𝑐 - 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( e ↑𝑐 - 𝑥 ) ) |
100 |
99
|
a1i |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( e ↑𝑐 - 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( e ↑𝑐 - 𝑥 ) ) ) |
101 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑖 ∈ ℕ0 ) |
102 |
|
peano2nn0 |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) |
103 |
101 102
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
104 |
|
ovex |
⊢ ( 𝑖 + 1 ) ∈ V |
105 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑗 ∈ ℕ0 ↔ ( 𝑖 + 1 ) ∈ ℕ0 ) ) |
106 |
105
|
anbi2d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ↔ ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ ℕ0 ) ) ) |
107 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) = ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ) |
108 |
107
|
feq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) : ℝ ⟶ ℂ ) ) |
109 |
106 108
|
imbi12d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) ↔ ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) : ℝ ⟶ ℂ ) ) ) |
110 |
|
eleq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ ℕ0 ↔ 𝑗 ∈ ℕ0 ) ) |
111 |
110
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ) ) |
112 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) ) |
113 |
112
|
feq1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ↔ ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) ) |
114 |
111 113
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) ) ) |
115 |
114 37
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) |
116 |
104 109 115
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) : ℝ ⟶ ℂ ) |
117 |
103 116
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) : ℝ ⟶ ℂ ) |
118 |
117
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) : ℝ ⟶ ℂ ) |
119 |
118 40
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ∈ ℂ ) |
120 |
26 119
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ∈ ℂ ) |
121 |
8 34 9 12
|
etransclem39 |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℂ ) |
122 |
121
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
123 |
122
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) = 𝐺 ) |
124 |
123
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( ℝ D 𝐺 ) ) |
125 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
126 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑅 + 1 ) ) → 𝑖 ∈ ℕ0 ) |
127 |
126 37
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑅 + 1 ) ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
128 |
125 50 127 12
|
etransclem2 |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) ) |
129 |
124 128
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) ) |
130 |
6 24 64 100 45 120 129
|
dvmptmul |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) · ( e ↑𝑐 - 𝑥 ) ) ) ) ) |
131 |
120 24
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) · ( e ↑𝑐 - 𝑥 ) ) = ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) ) |
132 |
131
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) · ( e ↑𝑐 - 𝑥 ) ) ) = ( ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) ) ) |
133 |
24
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → - ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
134 |
133 45
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
135 |
24 120
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) ∈ ℂ ) |
136 |
134 135
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) ) = ( ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) + ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
137 |
135 46
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) + - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) − ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
138 |
24 45
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
139 |
138
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) + ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) + - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
140 |
24 120 45
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( e ↑𝑐 - 𝑥 ) · ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) − ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
141 |
137 139 140
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) + ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( e ↑𝑐 - 𝑥 ) · ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
142 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
143 |
26 119 41
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
144 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ) |
145 |
144
|
fveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) ‘ 𝑥 ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
146 |
107
|
fveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) ‘ 𝑥 ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) |
147 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) = ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) |
148 |
147
|
fveq1d |
⊢ ( 𝑗 = 0 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) ‘ 𝑥 ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) |
149 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑅 + 1 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) = ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ) |
150 |
149
|
fveq1d |
⊢ ( 𝑗 = ( 𝑅 + 1 ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) ‘ 𝑥 ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) ) |
151 |
8
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
152 |
34 151
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) ∈ ℕ0 ) |
153 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
154 |
8 153
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
155 |
152 154
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ∈ ℕ0 ) |
156 |
11 155
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
157 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑅 ∈ ℕ0 ) |
158 |
157
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑅 ∈ ℤ ) |
159 |
|
peano2nn0 |
⊢ ( 𝑅 ∈ ℕ0 → ( 𝑅 + 1 ) ∈ ℕ0 ) |
160 |
156 159
|
syl |
⊢ ( 𝜑 → ( 𝑅 + 1 ) ∈ ℕ0 ) |
161 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
162 |
160 161
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑅 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
163 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑅 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
164 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑅 + 1 ) ) → 𝑗 ∈ ℕ0 ) |
165 |
164 115
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... ( 𝑅 + 1 ) ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) |
166 |
165
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑅 + 1 ) ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) : ℝ ⟶ ℂ ) |
167 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑅 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
168 |
166 167
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑅 + 1 ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℂ ) |
169 |
145 146 148 150 158 163 168
|
telfsum2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) = ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) − ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) ) |
170 |
142 143 169
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) = ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) − ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) ) |
171 |
170
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( e ↑𝑐 - 𝑥 ) · ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) = ( ( e ↑𝑐 - 𝑥 ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) − ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) ) ) |
172 |
156
|
nn0red |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
173 |
172
|
ltp1d |
⊢ ( 𝜑 → 𝑅 < ( 𝑅 + 1 ) ) |
174 |
11 173
|
eqbrtrrid |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) < ( 𝑅 + 1 ) ) |
175 |
|
etransclem5 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 − 𝑗 ) ↑ if ( 𝑗 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
176 |
6 7 8 34 9 160 174 175
|
etransclem32 |
⊢ ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
177 |
176
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ 0 ) ‘ 𝑥 ) ) |
178 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ 0 ) = ( 𝑥 ∈ ℝ ↦ 0 ) |
179 |
178
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ 0 ) ‘ 𝑥 ) = 0 ) |
180 |
57 179
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ 0 ) ‘ 𝑥 ) = 0 ) |
181 |
177 180
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) = 0 ) |
182 |
|
cnex |
⊢ ℂ ∈ V |
183 |
182
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
184 |
6 5
|
ssexd |
⊢ ( 𝜑 → ℝ ∈ V ) |
185 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : ℝ ⟶ ℂ ∧ ℝ ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
186 |
183 184 50 5 185
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
187 |
|
dvn0 |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
188 |
49 186 187
|
syl2anc |
⊢ ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
189 |
188
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
190 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
191 |
181 190
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) − ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) = ( 0 − ( 𝐹 ‘ 𝑥 ) ) ) |
192 |
|
df-neg |
⊢ - ( 𝐹 ‘ 𝑥 ) = ( 0 − ( 𝐹 ‘ 𝑥 ) ) |
193 |
191 192
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) − ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) = - ( 𝐹 ‘ 𝑥 ) ) |
194 |
193
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( e ↑𝑐 - 𝑥 ) · ( ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑅 + 1 ) ) ‘ 𝑥 ) − ( ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ‘ 𝑥 ) ) ) = ( ( e ↑𝑐 - 𝑥 ) · - ( 𝐹 ‘ 𝑥 ) ) ) |
195 |
141 171 194
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( e ↑𝑐 - 𝑥 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) ) + ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( e ↑𝑐 - 𝑥 ) · - ( 𝐹 ‘ 𝑥 ) ) ) |
196 |
132 136 195
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) · ( e ↑𝑐 - 𝑥 ) ) ) = ( ( e ↑𝑐 - 𝑥 ) · - ( 𝐹 ‘ 𝑥 ) ) ) |
197 |
196
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( ( - ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) + ( Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 𝑖 + 1 ) ) ‘ 𝑥 ) · ( e ↑𝑐 - 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( e ↑𝑐 - 𝑥 ) · - ( 𝐹 ‘ 𝑥 ) ) ) ) |
198 |
24 51
|
mulneg2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( e ↑𝑐 - 𝑥 ) · - ( 𝐹 ‘ 𝑥 ) ) = - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
199 |
198
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( ( e ↑𝑐 - 𝑥 ) · - ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
200 |
130 197 199
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
201 |
6 46 53 200
|
dvmptneg |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ℝ ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ - - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
202 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ℝ D ( 𝑥 ∈ ℝ ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ - - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
203 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ ℝ ) |
204 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
205 |
204
|
zred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ ) |
206 |
205
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℝ ) |
207 |
203 206
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 0 [,] 𝑗 ) ⊆ ℝ ) |
208 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
209 |
208
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
210 |
|
0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 0 ∈ ℝ ) |
211 |
|
iccntr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] 𝑗 ) ) = ( 0 (,) 𝑗 ) ) |
212 |
210 205 211
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] 𝑗 ) ) = ( 0 (,) 𝑗 ) ) |
213 |
212
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] 𝑗 ) ) = ( 0 (,) 𝑗 ) ) |
214 |
17 48 55 202 207 209 208 213
|
dvmptres2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ℝ D ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ - - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
215 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → e ∈ ℂ ) |
216 |
|
elioore |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → 𝑥 ∈ ℝ ) |
217 |
216
|
recnd |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) → 𝑥 ∈ ℂ ) |
218 |
217
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ∈ ℂ ) |
219 |
218
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → - 𝑥 ∈ ℂ ) |
220 |
215 219
|
cxpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
221 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
222 |
216
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ∈ ℝ ) |
223 |
221 222
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
224 |
220 223
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
225 |
224
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → - - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) = ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
226 |
225
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ - - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
227 |
226
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ - - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
228 |
16 214 227
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ℝ D 𝑂 ) = ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
229 |
228
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 ) ) |
230 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 ) ) |
231 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → 𝑥 ∈ ( 0 (,) 𝑗 ) ) |
232 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
233 |
232
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ∧ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) → ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 ) = ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
234 |
231 224 233
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 ) = ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
235 |
234
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑥 ) = ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
236 |
230 235
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) = ( ( ℝ D 𝑂 ) ‘ 𝑥 ) ) |
237 |
236
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 = ∫ ( 0 (,) 𝑗 ) ( ( ℝ D 𝑂 ) ‘ 𝑥 ) d 𝑥 ) |
238 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑗 ) |
239 |
238
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ≤ 𝑗 ) |
240 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
241 |
|
eqidd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ) |
242 |
90
|
adantl |
⊢ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) ∧ 𝑦 = - 𝑥 ) → ( e ↑𝑐 𝑦 ) = ( e ↑𝑐 - 𝑥 ) ) |
243 |
210 205
|
iccssred |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 0 [,] 𝑗 ) ⊆ ℝ ) |
244 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
245 |
243 244
|
sstrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 0 [,] 𝑗 ) ⊆ ℂ ) |
246 |
245
|
sselda |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝑥 ∈ ℂ ) |
247 |
246
|
negcld |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → - 𝑥 ∈ ℂ ) |
248 |
19
|
a1i |
⊢ ( 𝑥 ∈ ℂ → e ∈ ℂ ) |
249 |
|
negcl |
⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) |
250 |
248 249
|
cxpcld |
⊢ ( 𝑥 ∈ ℂ → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
251 |
246 250
|
syl |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) ∈ ℂ ) |
252 |
241 242 247 251
|
fvmptd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) = ( e ↑𝑐 - 𝑥 ) ) |
253 |
252
|
eqcomd |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) = ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) |
254 |
253
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ( e ↑𝑐 - 𝑥 ) = ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) |
255 |
254
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( e ↑𝑐 - 𝑥 ) ) = ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) ) |
256 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
257 |
256
|
a1i |
⊢ ( e ∈ ℝ+ → -∞ ∈ ℝ* ) |
258 |
|
0red |
⊢ ( e ∈ ℝ+ → 0 ∈ ℝ ) |
259 |
|
rpxr |
⊢ ( e ∈ ℝ+ → e ∈ ℝ* ) |
260 |
|
rpgt0 |
⊢ ( e ∈ ℝ+ → 0 < e ) |
261 |
257 258 259 260
|
gtnelioc |
⊢ ( e ∈ ℝ+ → ¬ e ∈ ( -∞ (,] 0 ) ) |
262 |
80 261
|
ax-mp |
⊢ ¬ e ∈ ( -∞ (,] 0 ) |
263 |
|
eldif |
⊢ ( e ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( e ∈ ℂ ∧ ¬ e ∈ ( -∞ (,] 0 ) ) ) |
264 |
19 262 263
|
mpbir2an |
⊢ e ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) |
265 |
|
cxpcncf2 |
⊢ ( e ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
266 |
264 265
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
267 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - 𝑥 ) = ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - 𝑥 ) |
268 |
267
|
negcncf |
⊢ ( ( 0 [,] 𝑗 ) ⊆ ℂ → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - 𝑥 ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
269 |
245 268
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - 𝑥 ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
270 |
269
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - 𝑥 ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
271 |
266 270
|
cncfmpt1f |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( ( 𝑦 ∈ ℂ ↦ ( e ↑𝑐 𝑦 ) ) ‘ - 𝑥 ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
272 |
255 271
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( e ↑𝑐 - 𝑥 ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
273 |
244
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ℝ ⊆ ℂ ) |
274 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝑃 ∈ ℕ ) |
275 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝑀 ∈ ℕ0 ) |
276 |
|
etransclem6 |
⊢ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) ) |
277 |
9 276
|
eqtri |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑘 ) ↑ 𝑃 ) ) ) |
278 |
243
|
sselda |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝑥 ∈ ℝ ) |
279 |
278
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝑥 ∈ ℝ ) |
280 |
273 274 275 277 279
|
etransclem13 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ( 𝐹 ‘ 𝑥 ) = ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
281 |
280
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ) |
282 |
245
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 0 [,] 𝑗 ) ⊆ ℂ ) |
283 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 0 ... 𝑀 ) ∈ Fin ) |
284 |
279
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝑥 ∈ ℂ ) |
285 |
284
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ ℂ ) |
286 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ℤ ) |
287 |
286
|
zcnd |
⊢ ( 𝑘 ∈ ( 0 ... 𝑀 ) → 𝑘 ∈ ℂ ) |
288 |
287
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ℂ ) |
289 |
285 288
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 − 𝑘 ) ∈ ℂ ) |
290 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝑃 ∈ ℕ ) |
291 |
290 153
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ( 𝑃 − 1 ) ∈ ℕ0 ) |
292 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝑃 ∈ ℕ0 ) |
293 |
291 292
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
294 |
293
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
295 |
294
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
296 |
289 295
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ∈ ℂ ) |
297 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) |
298 |
245
|
adantr |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 0 [,] 𝑗 ) ⊆ ℂ ) |
299 |
|
ssid |
⊢ ℂ ⊆ ℂ |
300 |
299
|
a1i |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ℂ ⊆ ℂ ) |
301 |
298 300
|
idcncfg |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ 𝑥 ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
302 |
287
|
adantl |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → 𝑘 ∈ ℂ ) |
303 |
298 302 300
|
constcncfg |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ 𝑘 ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
304 |
301 303
|
subcncf |
⊢ ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( 𝑥 − 𝑘 ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
305 |
304
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( 𝑥 − 𝑘 ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
306 |
154 151
|
ifcld |
⊢ ( 𝜑 → if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 ) |
307 |
|
expcncf |
⊢ ( if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
308 |
306 307
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
309 |
308
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
310 |
299
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ℂ ⊆ ℂ ) |
311 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝑘 ) → ( 𝑦 ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) = ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) |
312 |
297 305 309 310 311
|
cncfcompt2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
313 |
282 283 296 312
|
fprodcncf |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ∏ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ if ( 𝑘 = 0 , ( 𝑃 − 1 ) , 𝑃 ) ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
314 |
281 313
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
315 |
272 314
|
mulcncf |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
316 |
|
ioossicc |
⊢ ( 0 (,) 𝑗 ) ⊆ ( 0 [,] 𝑗 ) |
317 |
316
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 0 (,) 𝑗 ) ⊆ ( 0 [,] 𝑗 ) ) |
318 |
299
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ℂ ⊆ ℂ ) |
319 |
224
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 (,) 𝑗 ) ) → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
320 |
240 315 317 318 319
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( ( 0 (,) 𝑗 ) –cn→ ℂ ) ) |
321 |
228 320
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ℝ D 𝑂 ) ∈ ( ( 0 (,) 𝑗 ) –cn→ ℂ ) ) |
322 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
323 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ℕ ) |
324 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ℕ0 ) |
325 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑥 − 𝑗 ) = ( 𝑥 − 𝑘 ) ) |
326 |
325
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) = ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) ) |
327 |
326
|
cbvprodv |
⊢ ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) = ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) |
328 |
327
|
oveq2i |
⊢ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) = ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) ) |
329 |
328
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) ) ) |
330 |
9 329
|
eqtri |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑘 ) ↑ 𝑃 ) ) ) |
331 |
17 322 323 324 330 203 206
|
etransclem18 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 (,) 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
332 |
228 331
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ℝ D 𝑂 ) ∈ 𝐿1 ) |
333 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) |
334 |
6 7 8 34 9 12
|
etransclem43 |
⊢ ( 𝜑 → 𝐺 ∈ ( ℝ –cn→ ℂ ) ) |
335 |
123 334
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
336 |
335
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ℝ ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
337 |
121
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → 𝐺 : ℝ ⟶ ℂ ) |
338 |
337 279
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑗 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
339 |
333 336 207 318 338
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
340 |
272 339
|
mulcncf |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
341 |
340
|
negcncfg |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
342 |
13 341
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑂 ∈ ( ( 0 [,] 𝑗 ) –cn→ ℂ ) ) |
343 |
203 206 239 321 332 342
|
ftc2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( ( ℝ D 𝑂 ) ‘ 𝑥 ) d 𝑥 = ( ( 𝑂 ‘ 𝑗 ) − ( 𝑂 ‘ 0 ) ) ) |
344 |
|
negeq |
⊢ ( 𝑥 = 𝑗 → - 𝑥 = - 𝑗 ) |
345 |
344
|
oveq2d |
⊢ ( 𝑥 = 𝑗 → ( e ↑𝑐 - 𝑥 ) = ( e ↑𝑐 - 𝑗 ) ) |
346 |
|
fveq2 |
⊢ ( 𝑥 = 𝑗 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑗 ) ) |
347 |
345 346
|
oveq12d |
⊢ ( 𝑥 = 𝑗 → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
348 |
347
|
negeqd |
⊢ ( 𝑥 = 𝑗 → - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
349 |
203
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ ℝ* ) |
350 |
206
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℝ* ) |
351 |
|
ubicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑗 ∈ ℝ* ∧ 0 ≤ 𝑗 ) → 𝑗 ∈ ( 0 [,] 𝑗 ) ) |
352 |
349 350 239 351
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 [,] 𝑗 ) ) |
353 |
19
|
a1i |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → e ∈ ℂ ) |
354 |
205
|
recnd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℂ ) |
355 |
354
|
negcld |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → - 𝑗 ∈ ℂ ) |
356 |
353 355
|
cxpcld |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( e ↑𝑐 - 𝑗 ) ∈ ℂ ) |
357 |
356
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( e ↑𝑐 - 𝑗 ) ∈ ℂ ) |
358 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝐺 : ℝ ⟶ ℂ ) |
359 |
358 206
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ℂ ) |
360 |
357 359
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ∈ ℂ ) |
361 |
360
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ∈ ℂ ) |
362 |
13 348 352 361
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑂 ‘ 𝑗 ) = - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) |
363 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑂 = ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
364 |
|
negeq |
⊢ ( 𝑥 = 0 → - 𝑥 = - 0 ) |
365 |
364
|
oveq2d |
⊢ ( 𝑥 = 0 → ( e ↑𝑐 - 𝑥 ) = ( e ↑𝑐 - 0 ) ) |
366 |
|
neg0 |
⊢ - 0 = 0 |
367 |
366
|
oveq2i |
⊢ ( e ↑𝑐 - 0 ) = ( e ↑𝑐 0 ) |
368 |
|
cxp0 |
⊢ ( e ∈ ℂ → ( e ↑𝑐 0 ) = 1 ) |
369 |
19 368
|
ax-mp |
⊢ ( e ↑𝑐 0 ) = 1 |
370 |
367 369
|
eqtri |
⊢ ( e ↑𝑐 - 0 ) = 1 |
371 |
365 370
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( e ↑𝑐 - 𝑥 ) = 1 ) |
372 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 0 ) ) |
373 |
371 372
|
oveq12d |
⊢ ( 𝑥 = 0 → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = ( 1 · ( 𝐺 ‘ 0 ) ) ) |
374 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
375 |
121 374
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) ∈ ℂ ) |
376 |
375
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( 𝐺 ‘ 0 ) ) = ( 𝐺 ‘ 0 ) ) |
377 |
373 376
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 0 ) ) |
378 |
377
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = - ( 𝐺 ‘ 0 ) ) |
379 |
378
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 = 0 ) → - ( ( e ↑𝑐 - 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) = - ( 𝐺 ‘ 0 ) ) |
380 |
|
lbicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑗 ∈ ℝ* ∧ 0 ≤ 𝑗 ) → 0 ∈ ( 0 [,] 𝑗 ) ) |
381 |
349 350 239 380
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ ( 0 [,] 𝑗 ) ) |
382 |
375
|
negcld |
⊢ ( 𝜑 → - ( 𝐺 ‘ 0 ) ∈ ℂ ) |
383 |
382
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → - ( 𝐺 ‘ 0 ) ∈ ℂ ) |
384 |
363 379 381 383
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑂 ‘ 0 ) = - ( 𝐺 ‘ 0 ) ) |
385 |
362 384
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑂 ‘ 𝑗 ) − ( 𝑂 ‘ 0 ) ) = ( - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) − - ( 𝐺 ‘ 0 ) ) ) |
386 |
375
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐺 ‘ 0 ) ∈ ℂ ) |
387 |
361 386
|
subnegd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) − - ( 𝐺 ‘ 0 ) ) = ( - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) + ( 𝐺 ‘ 0 ) ) ) |
388 |
361 386
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) + ( 𝐺 ‘ 0 ) ) = ( ( 𝐺 ‘ 0 ) + - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) |
389 |
386 360
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐺 ‘ 0 ) + - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 𝐺 ‘ 0 ) − ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) |
390 |
388 389
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( - ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) + ( 𝐺 ‘ 0 ) ) = ( ( 𝐺 ‘ 0 ) − ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) |
391 |
385 387 390
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑂 ‘ 𝑗 ) − ( 𝑂 ‘ 0 ) ) = ( ( 𝐺 ‘ 0 ) − ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) |
392 |
237 343 391
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 = ( ( 𝐺 ‘ 0 ) − ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) |
393 |
392
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) = ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( 𝐺 ‘ 0 ) − ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
394 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑄 ∈ ( Poly ‘ ℤ ) ) |
395 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ ℤ ) |
396 |
3
|
coef2 |
⊢ ( ( 𝑄 ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℤ ) → 𝐴 : ℕ0 ⟶ ℤ ) |
397 |
394 395 396
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝐴 : ℕ0 ⟶ ℤ ) |
398 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
399 |
398
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℕ0 ) |
400 |
397 399
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℤ ) |
401 |
400
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
402 |
353 354
|
cxpcld |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( e ↑𝑐 𝑗 ) ∈ ℂ ) |
403 |
402
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( e ↑𝑐 𝑗 ) ∈ ℂ ) |
404 |
401 403
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ∈ ℂ ) |
405 |
404 386 360
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( 𝐺 ‘ 0 ) − ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) − ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
406 |
393 405
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) = ( ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) − ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
407 |
406
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) − ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
408 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
409 |
404 386
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) ∈ ℂ ) |
410 |
404 360
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℂ ) |
411 |
408 409 410
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) − ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) − Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
412 |
2
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 𝑄 ‘ e ) ) |
413 |
3 4
|
coeid2 |
⊢ ( ( 𝑄 ∈ ( Poly ‘ ℤ ) ∧ e ∈ ℂ ) → ( 𝑄 ‘ e ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 ) · ( e ↑ 𝑗 ) ) ) |
414 |
31 19 413
|
sylancl |
⊢ ( 𝜑 → ( 𝑄 ‘ e ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 ) · ( e ↑ 𝑗 ) ) ) |
415 |
|
cxpexp |
⊢ ( ( e ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( e ↑𝑐 𝑗 ) = ( e ↑ 𝑗 ) ) |
416 |
353 398 415
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( e ↑𝑐 𝑗 ) = ( e ↑ 𝑗 ) ) |
417 |
416
|
eqcomd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( e ↑ 𝑗 ) = ( e ↑𝑐 𝑗 ) ) |
418 |
417
|
oveq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝐴 ‘ 𝑗 ) · ( e ↑ 𝑗 ) ) = ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) |
419 |
418
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑗 ) · ( e ↑ 𝑗 ) ) = ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) |
420 |
419
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 ) · ( e ↑ 𝑗 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) |
421 |
412 414 420
|
3eqtrd |
⊢ ( 𝜑 → 0 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) |
422 |
421
|
oveq1d |
⊢ ( 𝜑 → ( 0 · ( 𝐺 ‘ 0 ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) ) |
423 |
375
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝐺 ‘ 0 ) ) = 0 ) |
424 |
408 375 404
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) ) |
425 |
422 423 424
|
3eqtr3rd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) = 0 ) |
426 |
|
fveq2 |
⊢ ( 𝑥 = 𝑗 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
427 |
426
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑗 → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
428 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 0 ... 𝑅 ) ∈ Fin ) |
429 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) : ℝ ⟶ ℂ ) |
430 |
206
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → 𝑗 ∈ ℝ ) |
431 |
429 430
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ∈ ℂ ) |
432 |
428 431
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ∈ ℂ ) |
433 |
12 427 206 432
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
434 |
433
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) = ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
435 |
434
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) = ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) ) |
436 |
357 432
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ∈ ℂ ) |
437 |
401 403 436
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) = ( ( 𝐴 ‘ 𝑗 ) · ( ( e ↑𝑐 𝑗 ) · ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) ) ) |
438 |
369
|
eqcomi |
⊢ 1 = ( e ↑𝑐 0 ) |
439 |
438
|
a1i |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 1 = ( e ↑𝑐 0 ) ) |
440 |
354
|
negidd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + - 𝑗 ) = 0 ) |
441 |
440
|
eqcomd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 0 = ( 𝑗 + - 𝑗 ) ) |
442 |
441
|
oveq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( e ↑𝑐 0 ) = ( e ↑𝑐 ( 𝑗 + - 𝑗 ) ) ) |
443 |
57 58
|
gtneii |
⊢ e ≠ 0 |
444 |
443
|
a1i |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → e ≠ 0 ) |
445 |
353 444 354 355
|
cxpaddd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( e ↑𝑐 ( 𝑗 + - 𝑗 ) ) = ( ( e ↑𝑐 𝑗 ) · ( e ↑𝑐 - 𝑗 ) ) ) |
446 |
439 442 445
|
3eqtrd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 1 = ( ( e ↑𝑐 𝑗 ) · ( e ↑𝑐 - 𝑗 ) ) ) |
447 |
446
|
oveq1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 1 · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) = ( ( ( e ↑𝑐 𝑗 ) · ( e ↑𝑐 - 𝑗 ) ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
448 |
447
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) = ( ( ( e ↑𝑐 𝑗 ) · ( e ↑𝑐 - 𝑗 ) ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
449 |
432
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
450 |
403 357 432
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( e ↑𝑐 𝑗 ) · ( e ↑𝑐 - 𝑗 ) ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) = ( ( e ↑𝑐 𝑗 ) · ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) ) |
451 |
448 449 450
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( e ↑𝑐 𝑗 ) · ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
452 |
451
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑗 ) · ( ( e ↑𝑐 𝑗 ) · ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) ) = ( ( 𝐴 ‘ 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
453 |
428 401 431
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
454 |
452 453
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑗 ) · ( ( e ↑𝑐 𝑗 ) · ( ( e ↑𝑐 - 𝑗 ) · Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
455 |
435 437 454
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) = Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
456 |
455
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
457 |
|
vex |
⊢ 𝑗 ∈ V |
458 |
|
vex |
⊢ 𝑖 ∈ V |
459 |
457 458
|
op1std |
⊢ ( 𝑘 = 〈 𝑗 , 𝑖 〉 → ( 1st ‘ 𝑘 ) = 𝑗 ) |
460 |
459
|
fveq2d |
⊢ ( 𝑘 = 〈 𝑗 , 𝑖 〉 → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) = ( 𝐴 ‘ 𝑗 ) ) |
461 |
457 458
|
op2ndd |
⊢ ( 𝑘 = 〈 𝑗 , 𝑖 〉 → ( 2nd ‘ 𝑘 ) = 𝑖 ) |
462 |
461
|
fveq2d |
⊢ ( 𝑘 = 〈 𝑗 , 𝑖 〉 → ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) = ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ) |
463 |
462 459
|
fveq12d |
⊢ ( 𝑘 = 〈 𝑗 , 𝑖 〉 → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) |
464 |
460 463
|
oveq12d |
⊢ ( 𝑘 = 〈 𝑗 , 𝑖 〉 → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) = ( ( 𝐴 ‘ 𝑗 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ) |
465 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑅 ) ∈ Fin ) |
466 |
401
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
467 |
431
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ∈ ℂ ) |
468 |
466 467
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 ∈ ( 0 ... 𝑅 ) ) ) → ( ( 𝐴 ‘ 𝑗 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) ∈ ℂ ) |
469 |
464 408 465 468
|
fsumxp |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) Σ 𝑖 ∈ ( 0 ... 𝑅 ) ( ( 𝐴 ‘ 𝑗 ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) |
470 |
456 469
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) = Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) |
471 |
425 470
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) − Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) = ( 0 − Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) ) |
472 |
|
df-neg |
⊢ - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) = ( 0 − Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) |
473 |
472
|
eqcomi |
⊢ ( 0 − Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) = - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) |
474 |
473
|
a1i |
⊢ ( 𝜑 → ( 0 − Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) = - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) |
475 |
411 471 474
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( 𝐺 ‘ 0 ) ) − ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ( ( e ↑𝑐 - 𝑗 ) · ( 𝐺 ‘ 𝑗 ) ) ) ) = - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) |
476 |
14 407 475
|
3eqtrd |
⊢ ( 𝜑 → 𝐿 = - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ) |
477 |
476
|
oveq1d |
⊢ ( 𝜑 → ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... 𝑅 ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |