Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem47.q |
⊢ ( 𝜑 → 𝑄 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
2 |
|
etransclem47.qe0 |
⊢ ( 𝜑 → ( 𝑄 ‘ e ) = 0 ) |
3 |
|
etransclem47.a |
⊢ 𝐴 = ( coeff ‘ 𝑄 ) |
4 |
|
etransclem47.a0 |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ≠ 0 ) |
5 |
|
etransclem47.m |
⊢ 𝑀 = ( deg ‘ 𝑄 ) |
6 |
|
etransclem47.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
7 |
|
etransclem47.ap |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) < 𝑃 ) |
8 |
|
etransclem47.mp |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) < 𝑃 ) |
9 |
|
etransclem47.9 |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑃 − 1 ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) < 1 ) |
10 |
|
etransclem47.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑃 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑃 ) ) ) |
11 |
|
etransclem47.l |
⊢ 𝐿 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) d 𝑥 ) |
12 |
|
etransclem47.k |
⊢ 𝐾 = ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → 𝐾 = ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
14 |
|
ssid |
⊢ ℝ ⊆ ℝ |
15 |
14
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
16 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
17 |
16
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
18 |
|
reopn |
⊢ ℝ ∈ ( topGen ‘ ran (,) ) |
19 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
20 |
19
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
21 |
18 20
|
eleqtri |
⊢ ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
23 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
24 |
6 23
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
25 |
|
eqid |
⊢ ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) = ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) = ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
27 |
26
|
sumeq2sdv |
⊢ ( 𝑦 = 𝑥 → Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) = Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
28 |
27
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
29 |
|
negeq |
⊢ ( 𝑧 = 𝑥 → - 𝑧 = - 𝑥 ) |
30 |
29
|
oveq2d |
⊢ ( 𝑧 = 𝑥 → ( e ↑𝑐 - 𝑧 ) = ( e ↑𝑐 - 𝑥 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) = ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) |
32 |
30 31
|
oveq12d |
⊢ ( 𝑧 = 𝑥 → ( ( e ↑𝑐 - 𝑧 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) ) = ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) |
33 |
32
|
negeqd |
⊢ ( 𝑧 = 𝑥 → - ( ( e ↑𝑐 - 𝑧 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) ) = - ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) |
34 |
33
|
cbvmptv |
⊢ ( 𝑧 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑧 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( 0 [,] 𝑗 ) ↦ - ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ Σ 𝑖 ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ( ( ( ℝ D𝑛 𝐹 ) ‘ 𝑖 ) ‘ 𝑦 ) ) ‘ 𝑥 ) ) ) |
35 |
1 2 3 5 15 17 22 24 10 11 25 28 34
|
etransclem46 |
⊢ ( 𝜑 → ( 𝐿 / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
36 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
37 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ∈ Fin ) |
38 |
|
xpfi |
⊢ ( ( ( 0 ... 𝑀 ) ∈ Fin ∧ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ∈ Fin ) → ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∈ Fin ) |
39 |
36 37 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ∈ Fin ) |
40 |
1
|
eldifad |
⊢ ( 𝜑 → 𝑄 ∈ ( Poly ‘ ℤ ) ) |
41 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
42 |
3
|
coef2 |
⊢ ( ( 𝑄 ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℤ ) → 𝐴 : ℕ0 ⟶ ℤ ) |
43 |
40 41 42
|
syl2anc |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℤ ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝐴 : ℕ0 ⟶ ℤ ) |
45 |
|
xp1st |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) ) |
46 |
|
elfznn0 |
⊢ ( ( 1st ‘ 𝑘 ) ∈ ( 0 ... 𝑀 ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
47 |
45 46
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℕ0 ) |
49 |
44 48
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℤ ) |
50 |
49
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
51 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ℝ ∈ { ℝ , ℂ } ) |
52 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ℝ ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
53 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝑃 ∈ ℕ ) |
54 |
|
dgrcl |
⊢ ( 𝑄 ∈ ( Poly ‘ ℤ ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
55 |
40 54
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
56 |
5 55
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → 𝑀 ∈ ℕ0 ) |
58 |
|
xp2nd |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) |
59 |
|
elfznn0 |
⊢ ( ( 2nd ‘ 𝑘 ) ∈ ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
60 |
58 59
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 2nd ‘ 𝑘 ) ∈ ℕ0 ) |
62 |
51 52 53 57 10 61
|
etransclem33 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) : ℝ ⟶ ℂ ) |
63 |
48
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( 1st ‘ 𝑘 ) ∈ ℝ ) |
64 |
62 63
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ∈ ℂ ) |
65 |
50 64
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ) → ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℂ ) |
66 |
39 65
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) ∈ ℂ ) |
67 |
|
nnm1nn0 |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℕ0 ) |
68 |
24 67
|
syl |
⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ0 ) |
69 |
68
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℕ ) |
70 |
69
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ∈ ℂ ) |
71 |
69
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ ( 𝑃 − 1 ) ) ≠ 0 ) |
72 |
66 70 71
|
divnegd |
⊢ ( 𝜑 → - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
73 |
72
|
eqcomd |
⊢ ( 𝜑 → ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
74 |
13 35 73
|
3eqtrd |
⊢ ( 𝜑 → 𝐾 = - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
75 |
|
eqid |
⊢ ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) = ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) |
76 |
24 56 10 43 75
|
etransclem45 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
77 |
76
|
znegcld |
⊢ ( 𝜑 → - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℤ ) |
78 |
74 77
|
eqeltrd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
79 |
12 35
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ) |
80 |
66 70 71
|
divcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ∈ ℂ ) |
81 |
43 4 56 6 7 8 10 75
|
etransclem44 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ≠ 0 ) |
82 |
80 81
|
negne0d |
⊢ ( 𝜑 → - ( Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ≠ 0 ) |
83 |
73 82
|
eqnetrd |
⊢ ( 𝜑 → ( - Σ 𝑘 ∈ ( ( 0 ... 𝑀 ) × ( 0 ... ( ( 𝑀 · 𝑃 ) + ( 𝑃 − 1 ) ) ) ) ( ( 𝐴 ‘ ( 1st ‘ 𝑘 ) ) · ( ( ( ℝ D𝑛 𝐹 ) ‘ ( 2nd ‘ 𝑘 ) ) ‘ ( 1st ‘ 𝑘 ) ) ) / ( ! ‘ ( 𝑃 − 1 ) ) ) ≠ 0 ) |
84 |
79 83
|
eqnetrd |
⊢ ( 𝜑 → 𝐾 ≠ 0 ) |
85 |
|
eldifsni |
⊢ ( 𝑄 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) → 𝑄 ≠ 0𝑝 ) |
86 |
1 85
|
syl |
⊢ ( 𝜑 → 𝑄 ≠ 0𝑝 ) |
87 |
|
ere |
⊢ e ∈ ℝ |
88 |
87
|
recni |
⊢ e ∈ ℂ |
89 |
88
|
a1i |
⊢ ( 𝜑 → e ∈ ℂ ) |
90 |
|
dgrnznn |
⊢ ( ( ( 𝑄 ∈ ( Poly ‘ ℤ ) ∧ 𝑄 ≠ 0𝑝 ) ∧ ( e ∈ ℂ ∧ ( 𝑄 ‘ e ) = 0 ) ) → ( deg ‘ 𝑄 ) ∈ ℕ ) |
91 |
40 86 89 2 90
|
syl22anc |
⊢ ( 𝜑 → ( deg ‘ 𝑄 ) ∈ ℕ ) |
92 |
5 91
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
93 |
43 11 12 24 92 10 9
|
etransclem23 |
⊢ ( 𝜑 → ( abs ‘ 𝐾 ) < 1 ) |
94 |
|
neeq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 ≠ 0 ↔ 𝐾 ≠ 0 ) ) |
95 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( abs ‘ 𝑘 ) = ( abs ‘ 𝐾 ) ) |
96 |
95
|
breq1d |
⊢ ( 𝑘 = 𝐾 → ( ( abs ‘ 𝑘 ) < 1 ↔ ( abs ‘ 𝐾 ) < 1 ) ) |
97 |
94 96
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ↔ ( 𝐾 ≠ 0 ∧ ( abs ‘ 𝐾 ) < 1 ) ) ) |
98 |
97
|
rspcev |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 ≠ 0 ∧ ( abs ‘ 𝐾 ) < 1 ) ) → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |
99 |
78 84 93 98
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |