Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem48.q |
⊢ ( 𝜑 → 𝑄 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
2 |
|
etransclem48.qe0 |
⊢ ( 𝜑 → ( 𝑄 ‘ e ) = 0 ) |
3 |
|
etransclem48.a |
⊢ 𝐴 = ( coeff ‘ 𝑄 ) |
4 |
|
etransclem48.a0 |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ≠ 0 ) |
5 |
|
etransclem48.m |
⊢ 𝑀 = ( deg ‘ 𝑄 ) |
6 |
|
etransclem48.c |
⊢ 𝐶 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) |
7 |
|
etransclem48.s |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
8 |
|
etransclem48.i |
⊢ 𝐼 = inf ( { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } , ℝ , < ) |
9 |
|
etransclem48.t |
⊢ 𝑇 = sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) |
10 |
1
|
eldifad |
⊢ ( 𝜑 → 𝑄 ∈ ( Poly ‘ ℤ ) ) |
11 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
12 |
3
|
coef2 |
⊢ ( ( 𝑄 ∈ ( Poly ‘ ℤ ) ∧ 0 ∈ ℤ ) → 𝐴 : ℕ0 ⟶ ℤ ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℤ ) |
14 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
15 |
14
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
16 |
13 15
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ℤ ) |
17 |
|
zabscl |
⊢ ( ( 𝐴 ‘ 0 ) ∈ ℤ → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℤ ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℤ ) |
19 |
|
dgrcl |
⊢ ( 𝑄 ∈ ( Poly ‘ ℤ ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
20 |
10 19
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
21 |
5 20
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
22 |
21
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ∈ ℕ ) |
23 |
22
|
nnzd |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ∈ ℤ ) |
24 |
|
ssrab2 |
⊢ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ⊆ ℕ0 |
25 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
26 |
24 25
|
sstri |
⊢ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ⊆ ℤ |
27 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
28 |
24 27
|
sseqtri |
⊢ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ⊆ ( ℤ≥ ‘ 0 ) |
29 |
|
1rp |
⊢ 1 ∈ ℝ+ |
30 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
31 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) |
32 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
33 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ0 ↦ ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
34 |
7 33
|
nfcxfr |
⊢ Ⅎ 𝑛 𝑆 |
35 |
|
nn0ex |
⊢ ℕ0 ∈ V |
36 |
35
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ∈ V |
37 |
36
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ∈ V ) |
38 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
39 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝐴 : ℕ0 ⟶ ℤ ) |
40 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℕ0 ) |
42 |
39 41
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℤ ) |
43 |
42
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
44 |
|
ere |
⊢ e ∈ ℝ |
45 |
44
|
recni |
⊢ e ∈ ℂ |
46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → e ∈ ℂ ) |
47 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
48 |
47
|
zcnd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℂ ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℂ ) |
50 |
46 49
|
cxpcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( e ↑𝑐 𝑗 ) ∈ ℂ ) |
51 |
43 50
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ∈ ℂ ) |
52 |
51
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) ∈ ℝ ) |
53 |
52
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) ∈ ℂ ) |
54 |
21
|
nn0cnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
55 |
|
peano2nn0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
56 |
21 55
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
57 |
54 56
|
expcld |
⊢ ( 𝜑 → ( 𝑀 ↑ ( 𝑀 + 1 ) ) ∈ ℂ ) |
58 |
54 57
|
mulcld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ∈ ℂ ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ∈ ℂ ) |
60 |
53 59
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ∈ ℂ ) |
61 |
38 60
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ∈ ℂ ) |
62 |
6 61
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
63 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) = ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ) |
64 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 = 𝑖 ) → 𝐶 = 𝐶 ) |
65 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
66 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
67 |
63 64 65 66
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = 𝐶 ) |
68 |
27 11 37 62 67
|
climconst |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ⇝ 𝐶 ) |
69 |
35
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ V |
70 |
7 69
|
eqeltri |
⊢ 𝑆 ∈ V |
71 |
70
|
a1i |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
72 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
73 |
72
|
expfac |
⊢ ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ∈ ℂ → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ⇝ 0 ) |
74 |
57 73
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ⇝ 0 ) |
75 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
76 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
77 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) = ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) |
78 |
77
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑛 ) = 𝐶 ) |
79 |
75 76 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑛 ) = 𝐶 ) |
80 |
79 76
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑛 ) ∈ ℂ ) |
81 |
|
ovex |
⊢ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ∈ V |
82 |
72
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
83 |
81 82
|
mpan2 |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
85 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑀 + 1 ) ) ∈ ℂ ) |
86 |
85 75
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) ∈ ℂ ) |
87 |
75
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ! ‘ 𝑛 ) ∈ ℕ ) |
88 |
87
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ! ‘ 𝑛 ) ∈ ℂ ) |
89 |
87
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ! ‘ 𝑛 ) ≠ 0 ) |
90 |
86 88 89
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ∈ ℂ ) |
91 |
84 90
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
92 |
|
ovex |
⊢ ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ∈ V |
93 |
7
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ∈ V ) → ( 𝑆 ‘ 𝑛 ) = ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
94 |
92 93
|
mpan2 |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑆 ‘ 𝑛 ) = ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑛 ) = ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
96 |
79 84
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑛 ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) ) = ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) |
97 |
95 96
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑛 ) = ( ( ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑛 ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) ) ) |
98 |
30 31 32 34 27 11 68 71 74 80 91 97
|
climmulf |
⊢ ( 𝜑 → 𝑆 ⇝ ( 𝐶 · 0 ) ) |
99 |
62
|
mul01d |
⊢ ( 𝜑 → ( 𝐶 · 0 ) = 0 ) |
100 |
98 99
|
breqtrd |
⊢ ( 𝜑 → 𝑆 ⇝ 0 ) |
101 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑛 ) ) |
102 |
80 91
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑛 ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) ) ∈ ℂ ) |
103 |
97 102
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑛 ) ∈ ℂ ) |
104 |
34 27 11 71 101 103
|
clim0cf |
⊢ ( 𝜑 → ( 𝑆 ⇝ 0 ↔ ∀ 𝑒 ∈ ℝ+ ∃ 𝑖 ∈ ℕ0 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 𝑒 ) ) |
105 |
100 104
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑖 ∈ ℕ0 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 𝑒 ) |
106 |
|
breq2 |
⊢ ( 𝑒 = 1 → ( ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 𝑒 ↔ ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) ) |
107 |
106
|
rexralbidv |
⊢ ( 𝑒 = 1 → ( ∃ 𝑖 ∈ ℕ0 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 𝑒 ↔ ∃ 𝑖 ∈ ℕ0 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) ) |
108 |
107
|
rspcva |
⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑒 ∈ ℝ+ ∃ 𝑖 ∈ ℕ0 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 𝑒 ) → ∃ 𝑖 ∈ ℕ0 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) |
109 |
29 105 108
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) |
110 |
|
rabn0 |
⊢ ( { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ≠ ∅ ↔ ∃ 𝑖 ∈ ℕ0 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) |
111 |
109 110
|
sylibr |
⊢ ( 𝜑 → { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ≠ ∅ ) |
112 |
|
infssuzcl |
⊢ ( ( { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ⊆ ( ℤ≥ ‘ 0 ) ∧ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ≠ ∅ ) → inf ( { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } , ℝ , < ) ∈ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ) |
113 |
28 111 112
|
sylancr |
⊢ ( 𝜑 → inf ( { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } , ℝ , < ) ∈ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ) |
114 |
8 113
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ) |
115 |
26 114
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
116 |
|
tpssi |
⊢ ( ( ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℤ ∧ ( ! ‘ 𝑀 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ⊆ ℤ ) |
117 |
18 23 115 116
|
syl3anc |
⊢ ( 𝜑 → { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ⊆ ℤ ) |
118 |
|
xrltso |
⊢ < Or ℝ* |
119 |
118
|
a1i |
⊢ ( 𝜑 → < Or ℝ* ) |
120 |
|
tpfi |
⊢ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ∈ Fin |
121 |
120
|
a1i |
⊢ ( 𝜑 → { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ∈ Fin ) |
122 |
18
|
tpnzd |
⊢ ( 𝜑 → { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ≠ ∅ ) |
123 |
|
zssre |
⊢ ℤ ⊆ ℝ |
124 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
125 |
123 124
|
sstri |
⊢ ℤ ⊆ ℝ* |
126 |
117 125
|
sstrdi |
⊢ ( 𝜑 → { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ⊆ ℝ* ) |
127 |
|
fisupcl |
⊢ ( ( < Or ℝ* ∧ ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ∈ Fin ∧ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ≠ ∅ ∧ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ⊆ ℝ* ) ) → sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ) |
128 |
119 121 122 126 127
|
syl13anc |
⊢ ( 𝜑 → sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ) |
129 |
9 128
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ) |
130 |
117 129
|
sseldd |
⊢ ( 𝜑 → 𝑇 ∈ ℤ ) |
131 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
132 |
22
|
nnred |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ∈ ℝ ) |
133 |
130
|
zred |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
134 |
22
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ! ‘ 𝑀 ) ) |
135 |
|
fvex |
⊢ ( ! ‘ 𝑀 ) ∈ V |
136 |
135
|
tpid2 |
⊢ ( ! ‘ 𝑀 ) ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } |
137 |
|
supxrub |
⊢ ( ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ⊆ ℝ* ∧ ( ! ‘ 𝑀 ) ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ) → ( ! ‘ 𝑀 ) ≤ sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) ) |
138 |
126 136 137
|
sylancl |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ≤ sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) ) |
139 |
138 9
|
breqtrrdi |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ≤ 𝑇 ) |
140 |
131 132 133 134 139
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑇 ) |
141 |
|
elnnz |
⊢ ( 𝑇 ∈ ℕ ↔ ( 𝑇 ∈ ℤ ∧ 0 < 𝑇 ) ) |
142 |
130 140 141
|
sylanbrc |
⊢ ( 𝜑 → 𝑇 ∈ ℕ ) |
143 |
|
prmunb |
⊢ ( 𝑇 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝑇 < 𝑝 ) |
144 |
142 143
|
syl |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ℙ 𝑇 < 𝑝 ) |
145 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝑄 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ) |
146 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝑄 ‘ e ) = 0 ) |
147 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝐴 ‘ 0 ) ≠ 0 ) |
148 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝑝 ∈ ℙ ) |
149 |
16
|
zcnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
150 |
149
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
151 |
150
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ ℝ ) |
152 |
133
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝑇 ∈ ℝ ) |
153 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
154 |
153
|
zred |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ ) |
155 |
154
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝑝 ∈ ℝ ) |
156 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ⊆ ℝ* ) |
157 |
|
fvex |
⊢ ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ V |
158 |
157
|
tpid1 |
⊢ ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } |
159 |
|
supxrub |
⊢ ( ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ⊆ ℝ* ∧ ( abs ‘ ( 𝐴 ‘ 0 ) ) ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ) → ( abs ‘ ( 𝐴 ‘ 0 ) ) ≤ sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) ) |
160 |
156 158 159
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( abs ‘ ( 𝐴 ‘ 0 ) ) ≤ sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) ) |
161 |
160 9
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( abs ‘ ( 𝐴 ‘ 0 ) ) ≤ 𝑇 ) |
162 |
161
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( abs ‘ ( 𝐴 ‘ 0 ) ) ≤ 𝑇 ) |
163 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝑇 < 𝑝 ) |
164 |
151 152 155 162 163
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( abs ‘ ( 𝐴 ‘ 0 ) ) < 𝑝 ) |
165 |
132
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( ! ‘ 𝑀 ) ∈ ℝ ) |
166 |
139
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( ! ‘ 𝑀 ) ≤ 𝑇 ) |
167 |
165 152 155 166 163
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( ! ‘ 𝑀 ) < 𝑝 ) |
168 |
6
|
a1i |
⊢ ( 𝑛 = ( 𝑝 − 1 ) → 𝐶 = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ) |
169 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑝 − 1 ) → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) = ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) ) |
170 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑝 − 1 ) → ( ! ‘ 𝑛 ) = ( ! ‘ ( 𝑝 − 1 ) ) ) |
171 |
169 170
|
oveq12d |
⊢ ( 𝑛 = ( 𝑝 − 1 ) → ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) |
172 |
168 171
|
oveq12d |
⊢ ( 𝑛 = ( 𝑝 − 1 ) → ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) ) |
173 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
174 |
|
nnm1nn0 |
⊢ ( 𝑝 ∈ ℕ → ( 𝑝 − 1 ) ∈ ℕ0 ) |
175 |
173 174
|
syl |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 − 1 ) ∈ ℕ0 ) |
176 |
175
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 − 1 ) ∈ ℕ0 ) |
177 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ∈ ℂ ) |
178 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑀 ↑ ( 𝑀 + 1 ) ) ∈ ℂ ) |
179 |
178 176
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) ∈ ℂ ) |
180 |
175
|
faccld |
⊢ ( 𝑝 ∈ ℙ → ( ! ‘ ( 𝑝 − 1 ) ) ∈ ℕ ) |
181 |
180
|
nncnd |
⊢ ( 𝑝 ∈ ℙ → ( ! ‘ ( 𝑝 − 1 ) ) ∈ ℂ ) |
182 |
181
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ! ‘ ( 𝑝 − 1 ) ) ∈ ℂ ) |
183 |
180
|
nnne0d |
⊢ ( 𝑝 ∈ ℙ → ( ! ‘ ( 𝑝 − 1 ) ) ≠ 0 ) |
184 |
183
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ! ‘ ( 𝑝 − 1 ) ) ≠ 0 ) |
185 |
179 182 184
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ∈ ℂ ) |
186 |
177 185
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) ∈ ℂ ) |
187 |
7 172 176 186
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑆 ‘ ( 𝑝 − 1 ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) ) |
188 |
187
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) |
189 |
188
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) |
190 |
115
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝐼 ∈ ℤ ) |
191 |
|
1zzd |
⊢ ( 𝑝 ∈ ℙ → 1 ∈ ℤ ) |
192 |
153 191
|
zsubcld |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 − 1 ) ∈ ℤ ) |
193 |
192
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝑝 − 1 ) ∈ ℤ ) |
194 |
190
|
zred |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝐼 ∈ ℝ ) |
195 |
|
tpid3g |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ) |
196 |
115 195
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ) |
197 |
|
supxrub |
⊢ ( ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ⊆ ℝ* ∧ 𝐼 ∈ { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } ) → 𝐼 ≤ sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) ) |
198 |
126 196 197
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ≤ sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) , ( ! ‘ 𝑀 ) , 𝐼 } , ℝ* , < ) ) |
199 |
198 9
|
breqtrrdi |
⊢ ( 𝜑 → 𝐼 ≤ 𝑇 ) |
200 |
199
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝐼 ≤ 𝑇 ) |
201 |
194 152 155 200 163
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝐼 < 𝑝 ) |
202 |
153
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝑝 ∈ ℤ ) |
203 |
|
zltlem1 |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑝 ∈ ℤ ) → ( 𝐼 < 𝑝 ↔ 𝐼 ≤ ( 𝑝 − 1 ) ) ) |
204 |
190 202 203
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝐼 < 𝑝 ↔ 𝐼 ≤ ( 𝑝 − 1 ) ) ) |
205 |
201 204
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝐼 ≤ ( 𝑝 − 1 ) ) |
206 |
|
eluz2 |
⊢ ( ( 𝑝 − 1 ) ∈ ( ℤ≥ ‘ 𝐼 ) ↔ ( 𝐼 ∈ ℤ ∧ ( 𝑝 − 1 ) ∈ ℤ ∧ 𝐼 ≤ ( 𝑝 − 1 ) ) ) |
207 |
190 193 205 206
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝑝 − 1 ) ∈ ( ℤ≥ ‘ 𝐼 ) ) |
208 |
114
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 𝐼 ∈ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ) |
209 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝐼 ) ) |
210 |
209
|
raleqdv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) ) |
211 |
210
|
elrab |
⊢ ( 𝐼 ∈ { 𝑖 ∈ ℕ0 ∣ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 } ↔ ( 𝐼 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) ) |
212 |
208 211
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝐼 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) ) |
213 |
212
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ) |
214 |
|
nfcv |
⊢ Ⅎ 𝑛 abs |
215 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑝 − 1 ) |
216 |
34 215
|
nffv |
⊢ Ⅎ 𝑛 ( 𝑆 ‘ ( 𝑝 − 1 ) ) |
217 |
214 216
|
nffv |
⊢ Ⅎ 𝑛 ( abs ‘ ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) |
218 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
219 |
|
nfcv |
⊢ Ⅎ 𝑛 1 |
220 |
217 218 219
|
nfbr |
⊢ Ⅎ 𝑛 ( abs ‘ ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) < 1 |
221 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑝 − 1 ) → ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) = ( abs ‘ ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) ) |
222 |
221
|
breq1d |
⊢ ( 𝑛 = ( 𝑝 − 1 ) → ( ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 ↔ ( abs ‘ ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) < 1 ) ) |
223 |
220 222
|
rspc |
⊢ ( ( 𝑝 − 1 ) ∈ ( ℤ≥ ‘ 𝐼 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) ) < 1 → ( abs ‘ ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) < 1 ) ) |
224 |
207 213 223
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( abs ‘ ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) < 1 ) |
225 |
171
|
oveq2d |
⊢ ( 𝑛 = ( 𝑝 − 1 ) → ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) ) |
226 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) ∈ V ) |
227 |
7 225 176 226
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑆 ‘ ( 𝑝 − 1 ) ) = ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) ) |
228 |
21
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
229 |
228 56
|
reexpcld |
⊢ ( 𝜑 → ( 𝑀 ↑ ( 𝑀 + 1 ) ) ∈ ℝ ) |
230 |
228 229
|
remulcld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ∈ ℝ ) |
231 |
230
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ∈ ℝ ) |
232 |
52 231
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) |
233 |
38 232
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) |
234 |
6 233
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
235 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝐶 ∈ ℝ ) |
236 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑀 ↑ ( 𝑀 + 1 ) ) ∈ ℝ ) |
237 |
236 176
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) ∈ ℝ ) |
238 |
180
|
nnred |
⊢ ( 𝑝 ∈ ℙ → ( ! ‘ ( 𝑝 − 1 ) ) ∈ ℝ ) |
239 |
238
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ! ‘ ( 𝑝 − 1 ) ) ∈ ℝ ) |
240 |
237 239 184
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ∈ ℝ ) |
241 |
235 240
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝐶 · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) ∈ ℝ ) |
242 |
227 241
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑆 ‘ ( 𝑝 − 1 ) ) ∈ ℝ ) |
243 |
242
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝑆 ‘ ( 𝑝 − 1 ) ) ∈ ℝ ) |
244 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → 1 ∈ ℝ ) |
245 |
243 244
|
absltd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( ( abs ‘ ( 𝑆 ‘ ( 𝑝 − 1 ) ) ) < 1 ↔ ( - 1 < ( 𝑆 ‘ ( 𝑝 − 1 ) ) ∧ ( 𝑆 ‘ ( 𝑝 − 1 ) ) < 1 ) ) ) |
246 |
224 245
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( - 1 < ( 𝑆 ‘ ( 𝑝 − 1 ) ) ∧ ( 𝑆 ‘ ( 𝑝 − 1 ) ) < 1 ) ) |
247 |
246
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( 𝑆 ‘ ( 𝑝 − 1 ) ) < 1 ) |
248 |
189 247
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) ) · ( 𝑀 · ( 𝑀 ↑ ( 𝑀 + 1 ) ) ) ) · ( ( ( 𝑀 ↑ ( 𝑀 + 1 ) ) ↑ ( 𝑝 − 1 ) ) / ( ! ‘ ( 𝑝 − 1 ) ) ) ) < 1 ) |
249 |
|
etransclem6 |
⊢ ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑝 − 1 ) ) · ∏ 𝑧 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑧 ) ↑ 𝑝 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝑥 ↑ ( 𝑝 − 1 ) ) · ∏ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 𝑥 − 𝑗 ) ↑ 𝑝 ) ) ) |
250 |
|
eqid |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑝 − 1 ) ) · ∏ 𝑧 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑧 ) ↑ 𝑝 ) ) ) ‘ 𝑥 ) ) d 𝑥 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑝 − 1 ) ) · ∏ 𝑧 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑧 ) ↑ 𝑝 ) ) ) ‘ 𝑥 ) ) d 𝑥 ) |
251 |
|
eqid |
⊢ ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑝 − 1 ) ) · ∏ 𝑧 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑧 ) ↑ 𝑝 ) ) ) ‘ 𝑥 ) ) d 𝑥 ) / ( ! ‘ ( 𝑝 − 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 ) · ( e ↑𝑐 𝑗 ) ) · ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 ) · ( ( 𝑦 ∈ ℝ ↦ ( ( 𝑦 ↑ ( 𝑝 − 1 ) ) · ∏ 𝑧 ∈ ( 1 ... 𝑀 ) ( ( 𝑦 − 𝑧 ) ↑ 𝑝 ) ) ) ‘ 𝑥 ) ) d 𝑥 ) / ( ! ‘ ( 𝑝 − 1 ) ) ) |
252 |
145 146 3 147 5 148 164 167 248 249 250 251
|
etransclem47 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑇 < 𝑝 ) → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |
253 |
252
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ 𝑇 < 𝑝 → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) ) |
254 |
144 253
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℤ ( 𝑘 ≠ 0 ∧ ( abs ‘ 𝑘 ) < 1 ) ) |