| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem48.q | ⊢ ( 𝜑  →  𝑄  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 2 |  | etransclem48.qe0 | ⊢ ( 𝜑  →  ( 𝑄 ‘ e )  =  0 ) | 
						
							| 3 |  | etransclem48.a | ⊢ 𝐴  =  ( coeff ‘ 𝑄 ) | 
						
							| 4 |  | etransclem48.a0 | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ≠  0 ) | 
						
							| 5 |  | etransclem48.m | ⊢ 𝑀  =  ( deg ‘ 𝑄 ) | 
						
							| 6 |  | etransclem48.c | ⊢ 𝐶  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) ) | 
						
							| 7 |  | etransclem48.s | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 8 |  | etransclem48.i | ⊢ 𝐼  =  inf ( { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 } ,  ℝ ,   <  ) | 
						
							| 9 |  | etransclem48.t | ⊢ 𝑇  =  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  ) | 
						
							| 10 | 1 | eldifad | ⊢ ( 𝜑  →  𝑄  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 11 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 12 | 3 | coef2 | ⊢ ( ( 𝑄  ∈  ( Poly ‘ ℤ )  ∧  0  ∈  ℤ )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 13 | 10 11 12 | syl2anc | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 14 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 16 | 13 15 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ∈  ℤ ) | 
						
							| 17 |  | zabscl | ⊢ ( ( 𝐴 ‘ 0 )  ∈  ℤ  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℤ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℤ ) | 
						
							| 19 |  | dgrcl | ⊢ ( 𝑄  ∈  ( Poly ‘ ℤ )  →  ( deg ‘ 𝑄 )  ∈  ℕ0 ) | 
						
							| 20 | 10 19 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝑄 )  ∈  ℕ0 ) | 
						
							| 21 | 5 20 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 22 | 21 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 23 | 22 | nnzd | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 24 |  | ssrab2 | ⊢ { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 }  ⊆  ℕ0 | 
						
							| 25 |  | nn0ssz | ⊢ ℕ0  ⊆  ℤ | 
						
							| 26 | 24 25 | sstri | ⊢ { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 }  ⊆  ℤ | 
						
							| 27 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 28 | 24 27 | sseqtri | ⊢ { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 }  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 29 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 30 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 31 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ0  ↦  𝐶 ) | 
						
							| 32 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 33 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ0  ↦  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 34 | 7 33 | nfcxfr | ⊢ Ⅎ 𝑛 𝑆 | 
						
							| 35 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 36 | 35 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  𝐶 )  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  𝐶 )  ∈  V ) | 
						
							| 38 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 39 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝐴 : ℕ0 ⟶ ℤ ) | 
						
							| 40 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 42 | 39 41 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 43 | 42 | zcnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝐴 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 44 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 45 | 44 | recni | ⊢ e  ∈  ℂ | 
						
							| 46 | 45 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  e  ∈  ℂ ) | 
						
							| 47 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 48 | 47 | zcnd | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℂ ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ℂ ) | 
						
							| 50 | 46 49 | cxpcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( e ↑𝑐 𝑗 )  ∈  ℂ ) | 
						
							| 51 | 43 50 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ∈  ℂ ) | 
						
							| 52 | 51 | abscld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 53 | 52 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 54 | 21 | nn0cnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 55 |  | peano2nn0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 56 | 21 55 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 57 | 54 56 | expcld | ⊢ ( 𝜑  →  ( 𝑀 ↑ ( 𝑀  +  1 ) )  ∈  ℂ ) | 
						
							| 58 | 54 57 | mulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ∈  ℂ ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ∈  ℂ ) | 
						
							| 60 | 53 59 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 61 | 38 60 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 62 | 6 61 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 63 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ↦  𝐶 )  =  ( 𝑛  ∈  ℕ0  ↦  𝐶 ) ) | 
						
							| 64 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  ∧  𝑛  =  𝑖 )  →  𝐶  =  𝐶 ) | 
						
							| 65 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 66 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  𝐶  ∈  ℂ ) | 
						
							| 67 | 63 64 65 66 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  𝐶 ) ‘ 𝑖 )  =  𝐶 ) | 
						
							| 68 | 27 11 37 62 67 | climconst | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  𝐶 )  ⇝  𝐶 ) | 
						
							| 69 | 35 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) )  ∈  V | 
						
							| 70 | 7 69 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 71 | 70 | a1i | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 72 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 73 | 72 | expfac | ⊢ ( ( 𝑀 ↑ ( 𝑀  +  1 ) )  ∈  ℂ  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  ⇝  0 ) | 
						
							| 74 | 57 73 | syl | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  ⇝  0 ) | 
						
							| 75 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 76 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  𝐶  ∈  ℂ ) | 
						
							| 77 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  𝐶 )  =  ( 𝑛  ∈  ℕ0  ↦  𝐶 ) | 
						
							| 78 | 77 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℂ )  →  ( ( 𝑛  ∈  ℕ0  ↦  𝐶 ) ‘ 𝑛 )  =  𝐶 ) | 
						
							| 79 | 75 76 78 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  𝐶 ) ‘ 𝑛 )  =  𝐶 ) | 
						
							| 80 | 79 76 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  𝐶 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 81 |  | ovex | ⊢ ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) )  ∈  V | 
						
							| 82 | 72 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) )  ∈  V )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 )  =  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 83 | 81 82 | mpan2 | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 )  =  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 )  =  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 85 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀 ↑ ( 𝑀  +  1 ) )  ∈  ℂ ) | 
						
							| 86 | 85 75 | expcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 87 | 75 | faccld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ! ‘ 𝑛 )  ∈  ℕ ) | 
						
							| 88 | 87 | nncnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ! ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 89 | 87 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ! ‘ 𝑛 )  ≠  0 ) | 
						
							| 90 | 86 88 89 | divcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 91 | 84 90 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 92 |  | ovex | ⊢ ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  ∈  V | 
						
							| 93 | 7 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  ∈  V )  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 94 | 92 93 | mpan2 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 95 | 94 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 96 | 79 84 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  𝐶 ) ‘ 𝑛 )  ·  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) )  =  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ) | 
						
							| 97 | 95 96 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑆 ‘ 𝑛 )  =  ( ( ( 𝑛  ∈  ℕ0  ↦  𝐶 ) ‘ 𝑛 )  ·  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 98 | 30 31 32 34 27 11 68 71 74 80 91 97 | climmulf | ⊢ ( 𝜑  →  𝑆  ⇝  ( 𝐶  ·  0 ) ) | 
						
							| 99 | 62 | mul01d | ⊢ ( 𝜑  →  ( 𝐶  ·  0 )  =  0 ) | 
						
							| 100 | 98 99 | breqtrd | ⊢ ( 𝜑  →  𝑆  ⇝  0 ) | 
						
							| 101 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 102 | 80 91 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  𝐶 ) ‘ 𝑛 )  ·  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 103 | 97 102 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑆 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 104 | 34 27 11 71 101 103 | clim0cf | ⊢ ( 𝜑  →  ( 𝑆  ⇝  0  ↔  ∀ 𝑒  ∈  ℝ+ ∃ 𝑖  ∈  ℕ0 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  𝑒 ) ) | 
						
							| 105 | 100 104 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  ℝ+ ∃ 𝑖  ∈  ℕ0 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  𝑒 ) | 
						
							| 106 |  | breq2 | ⊢ ( 𝑒  =  1  →  ( ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  𝑒  ↔  ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 107 | 106 | rexralbidv | ⊢ ( 𝑒  =  1  →  ( ∃ 𝑖  ∈  ℕ0 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  𝑒  ↔  ∃ 𝑖  ∈  ℕ0 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 108 | 107 | rspcva | ⊢ ( ( 1  ∈  ℝ+  ∧  ∀ 𝑒  ∈  ℝ+ ∃ 𝑖  ∈  ℕ0 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  𝑒 )  →  ∃ 𝑖  ∈  ℕ0 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) | 
						
							| 109 | 29 105 108 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑖  ∈  ℕ0 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) | 
						
							| 110 |  | rabn0 | ⊢ ( { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 }  ≠  ∅  ↔  ∃ 𝑖  ∈  ℕ0 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) | 
						
							| 111 | 109 110 | sylibr | ⊢ ( 𝜑  →  { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 }  ≠  ∅ ) | 
						
							| 112 |  | infssuzcl | ⊢ ( ( { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 }  ⊆  ( ℤ≥ ‘ 0 )  ∧  { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 }  ≠  ∅ )  →  inf ( { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 } ,  ℝ ,   <  )  ∈  { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 } ) | 
						
							| 113 | 28 111 112 | sylancr | ⊢ ( 𝜑  →  inf ( { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 } ,  ℝ ,   <  )  ∈  { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 } ) | 
						
							| 114 | 8 113 | eqeltrid | ⊢ ( 𝜑  →  𝐼  ∈  { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 } ) | 
						
							| 115 | 26 114 | sselid | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 116 |  | tpssi | ⊢ ( ( ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℤ  ∧  ( ! ‘ 𝑀 )  ∈  ℤ  ∧  𝐼  ∈  ℤ )  →  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ⊆  ℤ ) | 
						
							| 117 | 18 23 115 116 | syl3anc | ⊢ ( 𝜑  →  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ⊆  ℤ ) | 
						
							| 118 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 119 | 118 | a1i | ⊢ ( 𝜑  →   <   Or  ℝ* ) | 
						
							| 120 |  | tpfi | ⊢ { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ∈  Fin | 
						
							| 121 | 120 | a1i | ⊢ ( 𝜑  →  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ∈  Fin ) | 
						
							| 122 | 18 | tpnzd | ⊢ ( 𝜑  →  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ≠  ∅ ) | 
						
							| 123 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 124 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 125 | 123 124 | sstri | ⊢ ℤ  ⊆  ℝ* | 
						
							| 126 | 117 125 | sstrdi | ⊢ ( 𝜑  →  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ⊆  ℝ* ) | 
						
							| 127 |  | fisupcl | ⊢ ( (  <   Or  ℝ*  ∧  ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ∈  Fin  ∧  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ≠  ∅  ∧  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ⊆  ℝ* ) )  →  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  )  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ) | 
						
							| 128 | 119 121 122 126 127 | syl13anc | ⊢ ( 𝜑  →  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  )  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ) | 
						
							| 129 | 9 128 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ) | 
						
							| 130 | 117 129 | sseldd | ⊢ ( 𝜑  →  𝑇  ∈  ℤ ) | 
						
							| 131 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 132 | 22 | nnred | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 133 | 130 | zred | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 134 | 22 | nngt0d | ⊢ ( 𝜑  →  0  <  ( ! ‘ 𝑀 ) ) | 
						
							| 135 |  | fvex | ⊢ ( ! ‘ 𝑀 )  ∈  V | 
						
							| 136 | 135 | tpid2 | ⊢ ( ! ‘ 𝑀 )  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } | 
						
							| 137 |  | supxrub | ⊢ ( ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ⊆  ℝ*  ∧  ( ! ‘ 𝑀 )  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } )  →  ( ! ‘ 𝑀 )  ≤  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  ) ) | 
						
							| 138 | 126 136 137 | sylancl | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  ≤  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  ) ) | 
						
							| 139 | 138 9 | breqtrrdi | ⊢ ( 𝜑  →  ( ! ‘ 𝑀 )  ≤  𝑇 ) | 
						
							| 140 | 131 132 133 134 139 | ltletrd | ⊢ ( 𝜑  →  0  <  𝑇 ) | 
						
							| 141 |  | elnnz | ⊢ ( 𝑇  ∈  ℕ  ↔  ( 𝑇  ∈  ℤ  ∧  0  <  𝑇 ) ) | 
						
							| 142 | 130 140 141 | sylanbrc | ⊢ ( 𝜑  →  𝑇  ∈  ℕ ) | 
						
							| 143 |  | prmunb | ⊢ ( 𝑇  ∈  ℕ  →  ∃ 𝑝  ∈  ℙ 𝑇  <  𝑝 ) | 
						
							| 144 | 142 143 | syl | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  ℙ 𝑇  <  𝑝 ) | 
						
							| 145 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝑄  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ) | 
						
							| 146 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝑄 ‘ e )  =  0 ) | 
						
							| 147 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝐴 ‘ 0 )  ≠  0 ) | 
						
							| 148 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝑝  ∈  ℙ ) | 
						
							| 149 | 16 | zcnd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 0 )  ∈  ℂ ) | 
						
							| 150 | 149 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝐴 ‘ 0 )  ∈  ℂ ) | 
						
							| 151 | 150 | abscld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  ℝ ) | 
						
							| 152 | 133 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝑇  ∈  ℝ ) | 
						
							| 153 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 154 | 153 | zred | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℝ ) | 
						
							| 155 | 154 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝑝  ∈  ℝ ) | 
						
							| 156 | 126 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ⊆  ℝ* ) | 
						
							| 157 |  | fvex | ⊢ ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  V | 
						
							| 158 | 157 | tpid1 | ⊢ ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } | 
						
							| 159 |  | supxrub | ⊢ ( ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ⊆  ℝ*  ∧  ( abs ‘ ( 𝐴 ‘ 0 ) )  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } )  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≤  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  ) ) | 
						
							| 160 | 156 158 159 | sylancl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≤  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  ) ) | 
						
							| 161 | 160 9 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≤  𝑇 ) | 
						
							| 162 | 161 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  ≤  𝑇 ) | 
						
							| 163 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝑇  <  𝑝 ) | 
						
							| 164 | 151 152 155 162 163 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( abs ‘ ( 𝐴 ‘ 0 ) )  <  𝑝 ) | 
						
							| 165 | 132 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( ! ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 166 | 139 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( ! ‘ 𝑀 )  ≤  𝑇 ) | 
						
							| 167 | 165 152 155 166 163 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( ! ‘ 𝑀 )  <  𝑝 ) | 
						
							| 168 | 6 | a1i | ⊢ ( 𝑛  =  ( 𝑝  −  1 )  →  𝐶  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 169 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑝  −  1 )  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  =  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) ) ) | 
						
							| 170 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑝  −  1 )  →  ( ! ‘ 𝑛 )  =  ( ! ‘ ( 𝑝  −  1 ) ) ) | 
						
							| 171 | 169 170 | oveq12d | ⊢ ( 𝑛  =  ( 𝑝  −  1 )  →  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) )  =  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) ) | 
						
							| 172 | 168 171 | oveq12d | ⊢ ( 𝑛  =  ( 𝑝  −  1 )  →  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) ) ) | 
						
							| 173 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 174 |  | nnm1nn0 | ⊢ ( 𝑝  ∈  ℕ  →  ( 𝑝  −  1 )  ∈  ℕ0 ) | 
						
							| 175 | 173 174 | syl | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑝  −  1 )  ∈  ℕ0 ) | 
						
							| 176 | 175 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  −  1 )  ∈  ℕ0 ) | 
						
							| 177 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 178 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑀 ↑ ( 𝑀  +  1 ) )  ∈  ℂ ) | 
						
							| 179 | 178 176 | expcld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  ∈  ℂ ) | 
						
							| 180 | 175 | faccld | ⊢ ( 𝑝  ∈  ℙ  →  ( ! ‘ ( 𝑝  −  1 ) )  ∈  ℕ ) | 
						
							| 181 | 180 | nncnd | ⊢ ( 𝑝  ∈  ℙ  →  ( ! ‘ ( 𝑝  −  1 ) )  ∈  ℂ ) | 
						
							| 182 | 181 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ! ‘ ( 𝑝  −  1 ) )  ∈  ℂ ) | 
						
							| 183 | 180 | nnne0d | ⊢ ( 𝑝  ∈  ℙ  →  ( ! ‘ ( 𝑝  −  1 ) )  ≠  0 ) | 
						
							| 184 | 183 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ! ‘ ( 𝑝  −  1 ) )  ≠  0 ) | 
						
							| 185 | 179 182 184 | divcld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) )  ∈  ℂ ) | 
						
							| 186 | 177 185 | mulcld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) )  ∈  ℂ ) | 
						
							| 187 | 7 172 176 186 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑆 ‘ ( 𝑝  −  1 ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) ) ) | 
						
							| 188 | 187 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) )  =  ( 𝑆 ‘ ( 𝑝  −  1 ) ) ) | 
						
							| 189 | 188 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) )  =  ( 𝑆 ‘ ( 𝑝  −  1 ) ) ) | 
						
							| 190 | 115 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝐼  ∈  ℤ ) | 
						
							| 191 |  | 1zzd | ⊢ ( 𝑝  ∈  ℙ  →  1  ∈  ℤ ) | 
						
							| 192 | 153 191 | zsubcld | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑝  −  1 )  ∈  ℤ ) | 
						
							| 193 | 192 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝑝  −  1 )  ∈  ℤ ) | 
						
							| 194 | 190 | zred | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝐼  ∈  ℝ ) | 
						
							| 195 |  | tpid3g | ⊢ ( 𝐼  ∈  ℤ  →  𝐼  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ) | 
						
							| 196 | 115 195 | syl | ⊢ ( 𝜑  →  𝐼  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ) | 
						
							| 197 |  | supxrub | ⊢ ( ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 }  ⊆  ℝ*  ∧  𝐼  ∈  { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } )  →  𝐼  ≤  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  ) ) | 
						
							| 198 | 126 196 197 | syl2anc | ⊢ ( 𝜑  →  𝐼  ≤  sup ( { ( abs ‘ ( 𝐴 ‘ 0 ) ) ,  ( ! ‘ 𝑀 ) ,  𝐼 } ,  ℝ* ,   <  ) ) | 
						
							| 199 | 198 9 | breqtrrdi | ⊢ ( 𝜑  →  𝐼  ≤  𝑇 ) | 
						
							| 200 | 199 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝐼  ≤  𝑇 ) | 
						
							| 201 | 194 152 155 200 163 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝐼  <  𝑝 ) | 
						
							| 202 | 153 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝑝  ∈  ℤ ) | 
						
							| 203 |  | zltlem1 | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑝  ∈  ℤ )  →  ( 𝐼  <  𝑝  ↔  𝐼  ≤  ( 𝑝  −  1 ) ) ) | 
						
							| 204 | 190 202 203 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝐼  <  𝑝  ↔  𝐼  ≤  ( 𝑝  −  1 ) ) ) | 
						
							| 205 | 201 204 | mpbid | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝐼  ≤  ( 𝑝  −  1 ) ) | 
						
							| 206 |  | eluz2 | ⊢ ( ( 𝑝  −  1 )  ∈  ( ℤ≥ ‘ 𝐼 )  ↔  ( 𝐼  ∈  ℤ  ∧  ( 𝑝  −  1 )  ∈  ℤ  ∧  𝐼  ≤  ( 𝑝  −  1 ) ) ) | 
						
							| 207 | 190 193 205 206 | syl3anbrc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝑝  −  1 )  ∈  ( ℤ≥ ‘ 𝐼 ) ) | 
						
							| 208 | 114 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  𝐼  ∈  { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 } ) | 
						
							| 209 |  | fveq2 | ⊢ ( 𝑖  =  𝐼  →  ( ℤ≥ ‘ 𝑖 )  =  ( ℤ≥ ‘ 𝐼 ) ) | 
						
							| 210 | 209 | raleqdv | ⊢ ( 𝑖  =  𝐼  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 211 | 210 | elrab | ⊢ ( 𝐼  ∈  { 𝑖  ∈  ℕ0  ∣  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑖 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 }  ↔  ( 𝐼  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 212 | 208 211 | sylib | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝐼  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) ) | 
						
							| 213 | 212 | simprd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1 ) | 
						
							| 214 |  | nfcv | ⊢ Ⅎ 𝑛 abs | 
						
							| 215 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝑝  −  1 ) | 
						
							| 216 | 34 215 | nffv | ⊢ Ⅎ 𝑛 ( 𝑆 ‘ ( 𝑝  −  1 ) ) | 
						
							| 217 | 214 216 | nffv | ⊢ Ⅎ 𝑛 ( abs ‘ ( 𝑆 ‘ ( 𝑝  −  1 ) ) ) | 
						
							| 218 |  | nfcv | ⊢ Ⅎ 𝑛  < | 
						
							| 219 |  | nfcv | ⊢ Ⅎ 𝑛 1 | 
						
							| 220 | 217 218 219 | nfbr | ⊢ Ⅎ 𝑛 ( abs ‘ ( 𝑆 ‘ ( 𝑝  −  1 ) ) )  <  1 | 
						
							| 221 |  | 2fveq3 | ⊢ ( 𝑛  =  ( 𝑝  −  1 )  →  ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  =  ( abs ‘ ( 𝑆 ‘ ( 𝑝  −  1 ) ) ) ) | 
						
							| 222 | 221 | breq1d | ⊢ ( 𝑛  =  ( 𝑝  −  1 )  →  ( ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1  ↔  ( abs ‘ ( 𝑆 ‘ ( 𝑝  −  1 ) ) )  <  1 ) ) | 
						
							| 223 | 220 222 | rspc | ⊢ ( ( 𝑝  −  1 )  ∈  ( ℤ≥ ‘ 𝐼 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝐼 ) ( abs ‘ ( 𝑆 ‘ 𝑛 ) )  <  1  →  ( abs ‘ ( 𝑆 ‘ ( 𝑝  −  1 ) ) )  <  1 ) ) | 
						
							| 224 | 207 213 223 | sylc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( abs ‘ ( 𝑆 ‘ ( 𝑝  −  1 ) ) )  <  1 ) | 
						
							| 225 | 171 | oveq2d | ⊢ ( 𝑛  =  ( 𝑝  −  1 )  →  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) ) ) | 
						
							| 226 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) )  ∈  V ) | 
						
							| 227 | 7 225 176 226 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑆 ‘ ( 𝑝  −  1 ) )  =  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) ) ) | 
						
							| 228 | 21 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 229 | 228 56 | reexpcld | ⊢ ( 𝜑  →  ( 𝑀 ↑ ( 𝑀  +  1 ) )  ∈  ℝ ) | 
						
							| 230 | 228 229 | remulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ∈  ℝ ) | 
						
							| 231 | 230 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) )  ∈  ℝ ) | 
						
							| 232 | 52 231 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 233 | 38 232 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 234 | 6 233 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 235 | 234 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝐶  ∈  ℝ ) | 
						
							| 236 | 229 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑀 ↑ ( 𝑀  +  1 ) )  ∈  ℝ ) | 
						
							| 237 | 236 176 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  ∈  ℝ ) | 
						
							| 238 | 180 | nnred | ⊢ ( 𝑝  ∈  ℙ  →  ( ! ‘ ( 𝑝  −  1 ) )  ∈  ℝ ) | 
						
							| 239 | 238 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ! ‘ ( 𝑝  −  1 ) )  ∈  ℝ ) | 
						
							| 240 | 237 239 184 | redivcld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) )  ∈  ℝ ) | 
						
							| 241 | 235 240 | remulcld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝐶  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) )  ∈  ℝ ) | 
						
							| 242 | 227 241 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑆 ‘ ( 𝑝  −  1 ) )  ∈  ℝ ) | 
						
							| 243 | 242 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝑆 ‘ ( 𝑝  −  1 ) )  ∈  ℝ ) | 
						
							| 244 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  1  ∈  ℝ ) | 
						
							| 245 | 243 244 | absltd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( ( abs ‘ ( 𝑆 ‘ ( 𝑝  −  1 ) ) )  <  1  ↔  ( - 1  <  ( 𝑆 ‘ ( 𝑝  −  1 ) )  ∧  ( 𝑆 ‘ ( 𝑝  −  1 ) )  <  1 ) ) ) | 
						
							| 246 | 224 245 | mpbid | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( - 1  <  ( 𝑆 ‘ ( 𝑝  −  1 ) )  ∧  ( 𝑆 ‘ ( 𝑝  −  1 ) )  <  1 ) ) | 
						
							| 247 | 246 | simprd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( 𝑆 ‘ ( 𝑝  −  1 ) )  <  1 ) | 
						
							| 248 | 189 247 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( abs ‘ ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) ) )  ·  ( 𝑀  ·  ( 𝑀 ↑ ( 𝑀  +  1 ) ) ) )  ·  ( ( ( 𝑀 ↑ ( 𝑀  +  1 ) ) ↑ ( 𝑝  −  1 ) )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) )  <  1 ) | 
						
							| 249 |  | etransclem6 | ⊢ ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑝  −  1 ) )  ·  ∏ 𝑧  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑧 ) ↑ 𝑝 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( 𝑥 ↑ ( 𝑝  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑝 ) ) ) | 
						
							| 250 |  | eqid | ⊢ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑝  −  1 ) )  ·  ∏ 𝑧  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑧 ) ↑ 𝑝 ) ) ) ‘ 𝑥 ) )  d 𝑥 )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑝  −  1 ) )  ·  ∏ 𝑧  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑧 ) ↑ 𝑝 ) ) ) ‘ 𝑥 ) )  d 𝑥 ) | 
						
							| 251 |  | eqid | ⊢ ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑝  −  1 ) )  ·  ∏ 𝑧  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑧 ) ↑ 𝑝 ) ) ) ‘ 𝑥 ) )  d 𝑥 )  /  ( ! ‘ ( 𝑝  −  1 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝐴 ‘ 𝑗 )  ·  ( e ↑𝑐 𝑗 ) )  ·  ∫ ( 0 (,) 𝑗 ) ( ( e ↑𝑐 - 𝑥 )  ·  ( ( 𝑦  ∈  ℝ  ↦  ( ( 𝑦 ↑ ( 𝑝  −  1 ) )  ·  ∏ 𝑧  ∈  ( 1 ... 𝑀 ) ( ( 𝑦  −  𝑧 ) ↑ 𝑝 ) ) ) ‘ 𝑥 ) )  d 𝑥 )  /  ( ! ‘ ( 𝑝  −  1 ) ) ) | 
						
							| 252 | 145 146 3 147 5 148 164 167 248 249 250 251 | etransclem47 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ  ∧  𝑇  <  𝑝 )  →  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) | 
						
							| 253 | 252 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  ℙ 𝑇  <  𝑝  →  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) ) | 
						
							| 254 | 144 253 | mpd | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ℤ ( 𝑘  ≠  0  ∧  ( abs ‘ 𝑘 )  <  1 ) ) |