| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem7.n | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 2 |  | etransclem7.c | ⊢ ( 𝜑  →  𝐶 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 3 |  | etransclem7.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 4 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 5 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  0  ∈  ℤ ) | 
						
							| 6 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  0  ∈  ℤ ) | 
						
							| 7 | 1 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 9 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑃  ∈  ℤ ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝐶 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) | 
						
							| 11 |  | 0zd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  0  ∈  ℤ ) | 
						
							| 12 |  | fzp1ss | ⊢ ( 0  ∈  ℤ  →  ( ( 0  +  1 ) ... 𝑀 )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( ( 0  +  1 ) ... 𝑀 )  ⊆  ( 0 ... 𝑀 ) ) | 
						
							| 14 |  | id | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 15 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 16 | 15 | oveq1i | ⊢ ( 1 ... 𝑀 )  =  ( ( 0  +  1 ) ... 𝑀 ) | 
						
							| 17 | 14 16 | eleqtrdi | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ( ( 0  +  1 ) ... 𝑀 ) ) | 
						
							| 18 | 13 17 | sseldd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 20 | 10 19 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐶 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 21 | 20 | elfzelzd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 22 | 9 21 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℤ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℤ ) | 
						
							| 24 | 21 | zred | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 𝐶 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 26 | 8 | zred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 28 | 25 26 27 | nltled | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 𝐶 ‘ 𝑗 )  ≤  𝑃 ) | 
						
							| 29 | 26 25 | subge0d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 0  ≤  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ↔  ( 𝐶 ‘ 𝑗 )  ≤  𝑃 ) ) | 
						
							| 30 | 28 29 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  0  ≤  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) | 
						
							| 31 |  | elfzle1 | ⊢ ( ( 𝐶 ‘ 𝑗 )  ∈  ( 0 ... 𝑁 )  →  0  ≤  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 32 | 20 31 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  0  ≤  ( 𝐶 ‘ 𝑗 ) ) | 
						
							| 34 | 26 25 | subge02d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 0  ≤  ( 𝐶 ‘ 𝑗 )  ↔  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ≤  𝑃 ) ) | 
						
							| 35 | 33 34 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ≤  𝑃 ) | 
						
							| 36 | 6 8 23 30 35 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ( 0 ... 𝑃 ) ) | 
						
							| 37 |  | permnn | ⊢ ( ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ( 0 ... 𝑃 )  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) )  ∈  ℕ ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) )  ∈  ℕ ) | 
						
							| 39 | 38 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) )  ∈  ℤ ) | 
						
							| 40 | 3 | elfzelzd | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 42 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 44 | 41 43 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐽  −  𝑗 )  ∈  ℤ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 𝐽  −  𝑗 )  ∈  ℤ ) | 
						
							| 46 |  | elnn0z | ⊢ ( ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℕ0  ↔  ( ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℤ  ∧  0  ≤  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) ) | 
						
							| 47 | 23 30 46 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℕ0 ) | 
						
							| 48 |  | zexpcl | ⊢ ( ( ( 𝐽  −  𝑗 )  ∈  ℤ  ∧  ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) )  ∈  ℕ0 )  →  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) )  ∈  ℤ ) | 
						
							| 49 | 45 47 48 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) )  ∈  ℤ ) | 
						
							| 50 | 39 49 | zmulcld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑃  <  ( 𝐶 ‘ 𝑗 ) )  →  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) )  ∈  ℤ ) | 
						
							| 51 | 5 50 | ifclda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑃  <  ( 𝐶 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 52 | 4 51 | fprodzcl | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) if ( 𝑃  <  ( 𝐶 ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ 𝑃 )  /  ( ! ‘ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( 𝑃  −  ( 𝐶 ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) |