Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem7.n |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
2 |
|
etransclem7.c |
⊢ ( 𝜑 → 𝐶 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
3 |
|
etransclem7.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 0 ... 𝑀 ) ) |
4 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
5 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → 0 ∈ ℤ ) |
6 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → 0 ∈ ℤ ) |
7 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → 𝑃 ∈ ℤ ) |
9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ℤ ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐶 : ( 0 ... 𝑀 ) ⟶ ( 0 ... 𝑁 ) ) |
11 |
|
0zd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 0 ∈ ℤ ) |
12 |
|
fzp1ss |
⊢ ( 0 ∈ ℤ → ( ( 0 + 1 ) ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → ( ( 0 + 1 ) ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
14 |
|
id |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
15 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
16 |
15
|
oveq1i |
⊢ ( 1 ... 𝑀 ) = ( ( 0 + 1 ) ... 𝑀 ) |
17 |
14 16
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) |
18 |
13 17
|
sseldd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
20 |
10 19
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) ) |
21 |
20
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℤ ) |
22 |
9 21
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ∈ ℤ ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ∈ ℤ ) |
24 |
21
|
zred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℝ ) |
26 |
8
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → 𝑃 ∈ ℝ ) |
27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) |
28 |
25 26 27
|
nltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 𝐶 ‘ 𝑗 ) ≤ 𝑃 ) |
29 |
26 25
|
subge0d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 0 ≤ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ↔ ( 𝐶 ‘ 𝑗 ) ≤ 𝑃 ) ) |
30 |
28 29
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → 0 ≤ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) |
31 |
|
elfzle1 |
⊢ ( ( 𝐶 ‘ 𝑗 ) ∈ ( 0 ... 𝑁 ) → 0 ≤ ( 𝐶 ‘ 𝑗 ) ) |
32 |
20 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( 𝐶 ‘ 𝑗 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → 0 ≤ ( 𝐶 ‘ 𝑗 ) ) |
34 |
26 25
|
subge02d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 0 ≤ ( 𝐶 ‘ 𝑗 ) ↔ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ≤ 𝑃 ) ) |
35 |
33 34
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ≤ 𝑃 ) |
36 |
6 8 23 30 35
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ∈ ( 0 ... 𝑃 ) ) |
37 |
|
permnn |
⊢ ( ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ∈ ( 0 ... 𝑃 ) → ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) ∈ ℕ ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) ∈ ℕ ) |
39 |
38
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) ∈ ℤ ) |
40 |
3
|
elfzelzd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐽 ∈ ℤ ) |
42 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℤ ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ℤ ) |
44 |
41 43
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐽 − 𝑗 ) ∈ ℤ ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 𝐽 − 𝑗 ) ∈ ℤ ) |
46 |
|
elnn0z |
⊢ ( ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ∈ ℕ0 ↔ ( ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ∈ ℤ ∧ 0 ≤ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) |
47 |
23 30 46
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ∈ ℕ0 ) |
48 |
|
zexpcl |
⊢ ( ( ( 𝐽 − 𝑗 ) ∈ ℤ ∧ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ∈ ℕ0 ) → ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ∈ ℤ ) |
49 |
45 47 48
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ∈ ℤ ) |
50 |
39 49
|
zmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ ¬ 𝑃 < ( 𝐶 ‘ 𝑗 ) ) → ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) ∈ ℤ ) |
51 |
5 50
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → if ( 𝑃 < ( 𝐶 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |
52 |
4 51
|
fprodzcl |
⊢ ( 𝜑 → ∏ 𝑗 ∈ ( 1 ... 𝑀 ) if ( 𝑃 < ( 𝐶 ‘ 𝑗 ) , 0 , ( ( ( ! ‘ 𝑃 ) / ( ! ‘ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) · ( ( 𝐽 − 𝑗 ) ↑ ( 𝑃 − ( 𝐶 ‘ 𝑗 ) ) ) ) ) ∈ ℤ ) |