| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem8.x | ⊢ ( 𝜑  →  𝑋  ⊆  ℂ ) | 
						
							| 2 |  | etransclem8.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 3 |  | etransclem8.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) ) ) | 
						
							| 4 | 1 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  ℂ ) | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑃  ∈  ℕ ) | 
						
							| 6 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 8 | 4 7 | expcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 ↑ ( 𝑃  −  1 ) )  ∈  ℂ ) | 
						
							| 9 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 10 | 4 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 11 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 12 | 11 | zcnd | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℂ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑗  ∈  ℂ ) | 
						
							| 14 | 10 13 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑥  −  𝑗 )  ∈  ℂ ) | 
						
							| 15 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 17 | 14 16 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑥  −  𝑗 ) ↑ 𝑃 )  ∈  ℂ ) | 
						
							| 18 | 9 17 | fprodcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 )  ∈  ℂ ) | 
						
							| 19 | 8 18 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  ·  ∏ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑥  −  𝑗 ) ↑ 𝑃 ) )  ∈  ℂ ) | 
						
							| 20 | 19 3 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℂ ) |