Step |
Hyp |
Ref |
Expression |
1 |
|
eu1.nf |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
3 |
2
|
euf |
⊢ ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑥 ) ) |
4 |
1
|
sb8euv |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
5 |
1
|
sb6rfv |
⊢ ( 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
7 |
6
|
imbi2i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑥 ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑥 ) ) |
9 |
5 8
|
anbi12ci |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
10 |
|
albiim |
⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑥 ) ↔ ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑥 ) ∧ ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
11 |
9 10
|
bitr4i |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑥 ) ) |
12 |
11
|
exbii |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑥 ) ) |
13 |
3 4 12
|
3bitr4i |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑥 = 𝑦 ) ) ) |