Metamath Proof Explorer


Theorem eu2

Description: An alternate way of defining existential uniqueness. Definition 6.10 of TakeutiZaring p. 26. (Contributed by NM, 8-Jul-1994) (Proof shortened by Wolf Lammen, 2-Dec-2018)

Ref Expression
Hypothesis eu2.nf 𝑦 𝜑
Assertion eu2 ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 eu2.nf 𝑦 𝜑
2 df-eu ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) )
3 1 mo3 ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) )
4 3 anbi2i ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) )
5 2 4 bitri ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) )