Metamath Proof Explorer


Theorem eu3v

Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994) Replace a nonfreeness hypothesis with a disjoint variable condition on ph , y to reduce axiom usage. (Revised by Wolf Lammen, 29-May-2019)

Ref Expression
Assertion eu3v ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 df-eu ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) )
2 df-mo ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
3 2 anbi2i ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
4 1 3 bitri ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )