Metamath Proof Explorer


Theorem eu4

Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995)

Ref Expression
Hypothesis eu4.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion eu4 ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥𝑦 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 eu4.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 df-eu ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) )
3 1 mo4 ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )
4 3 anbi2i ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥𝑦 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )
5 2 4 bitri ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥𝑦 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )