Step |
Hyp |
Ref |
Expression |
1 |
|
dfmoeu |
⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
2 |
1
|
anbi2i |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
3 |
|
abai |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
4 |
|
eu3v |
⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
5 |
2 3 4
|
3bitr4ri |
⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
6 |
|
abai |
⊢ ( ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) ) ) |
7 |
|
ancom |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑥 𝜑 ) ) |
8 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
9 |
8
|
alimi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
10 |
9
|
eximi |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
11 |
|
exsbim |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ∃ 𝑥 𝜑 ) |
12 |
10 11
|
syl |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) |
13 |
12
|
biantru |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) ) ) |
14 |
6 7 13
|
3bitr4i |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
15 |
5 14
|
bitri |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |