Metamath Proof Explorer


Theorem eu6im

Description: One direction of eu6 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023)

Ref Expression
Assertion eu6im ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃! 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 exsbim ( ∃ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) → ∃ 𝑥 𝜑 )
2 1 anim1i ( ( ∃ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) ) → ( ∃ 𝑥 𝜑 ∧ ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
3 eu6lem ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∃ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
4 eu3v ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
5 2 3 4 3imtr4i ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃! 𝑥 𝜑 )