| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 19.42v | ⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  𝑦  =  𝑧 )  ↔  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∃ 𝑧 𝑦  =  𝑧 ) ) | 
						
							| 2 |  | alsyl | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝑥  =  𝑧 ) ) | 
						
							| 3 |  | equvelv | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝑥  =  𝑧 )  ↔  𝑦  =  𝑧 ) | 
						
							| 4 | 2 3 | sylib | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  →  𝑦  =  𝑧 ) | 
						
							| 5 | 4 | pm4.71i | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  ↔  ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  ∧  𝑦  =  𝑧 ) ) | 
						
							| 6 |  | albiim | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ↔  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 7 | 6 | biancomi | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ↔  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) ) ) | 
						
							| 8 |  | equequ2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝑧 ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝜑  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 10 | 9 | albidv | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 11 | 10 | anbi2d | ⊢ ( 𝑦  =  𝑧  →  ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) )  ↔  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) ) | 
						
							| 12 | 7 11 | bitrid | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ↔  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) ) | 
						
							| 13 | 12 | pm5.32ri | ⊢ ( ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  𝑦  =  𝑧 )  ↔  ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  ∧  𝑦  =  𝑧 ) ) | 
						
							| 14 | 5 13 | bitr4i | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  ↔  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  𝑦  =  𝑧 ) ) | 
						
							| 15 | 14 | exbii | ⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  ↔  ∃ 𝑧 ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  𝑦  =  𝑧 ) ) | 
						
							| 16 |  | ax6evr | ⊢ ∃ 𝑧 𝑦  =  𝑧 | 
						
							| 17 | 16 | biantru | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ↔  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ∧  ∃ 𝑧 𝑦  =  𝑧 ) ) | 
						
							| 18 | 1 15 17 | 3bitr4ri | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ↔  ∃ 𝑧 ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 19 | 18 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ↔  ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 20 |  | exdistrv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  ↔  ( ∃ 𝑦 ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 21 | 19 20 | bitri | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  ↔  ( ∃ 𝑦 ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) |