Metamath Proof Explorer


Theorem eu6lem

Description: Lemma of eu6im . A dissection of an idiom characterizing existential uniqueness. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Extract common proof lines. (Revised by Wolf Lammen, 3-Mar-2023)

Ref Expression
Assertion eu6lem ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∃ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 19.42v ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ↔ ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ∃ 𝑧 𝑦 = 𝑧 ) )
2 alsyl ( ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) → ∀ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
3 equvelv ( ∀ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝑧 ) ↔ 𝑦 = 𝑧 )
4 2 3 sylib ( ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) → 𝑦 = 𝑧 )
5 4 pm4.71i ( ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) ↔ ( ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) ∧ 𝑦 = 𝑧 ) )
6 albiim ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
7 6 biancomi ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
8 equequ2 ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
9 8 imbi2d ( 𝑦 = 𝑧 → ( ( 𝜑𝑥 = 𝑦 ) ↔ ( 𝜑𝑥 = 𝑧 ) ) )
10 9 albidv ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
11 10 anbi2d ( 𝑦 = 𝑧 → ( ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) ) )
12 7 11 bitrid ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) ) )
13 12 pm5.32ri ( ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ↔ ( ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) ∧ 𝑦 = 𝑧 ) )
14 5 13 bitr4i ( ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) ↔ ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) )
15 14 exbii ( ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) )
16 ax6evr 𝑧 𝑦 = 𝑧
17 16 biantru ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ∃ 𝑧 𝑦 = 𝑧 ) )
18 1 15 17 3bitr4ri ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
19 18 exbii ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ∃ 𝑦𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
20 exdistrv ( ∃ 𝑦𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) ↔ ( ∃ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
21 19 20 bitri ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∃ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) ) )