Metamath Proof Explorer


Theorem euabex

Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994)

Ref Expression
Assertion euabex ( ∃! 𝑥 𝜑 → { 𝑥𝜑 } ∈ V )

Proof

Step Hyp Ref Expression
1 eumo ( ∃! 𝑥 𝜑 → ∃* 𝑥 𝜑 )
2 moabex ( ∃* 𝑥 𝜑 → { 𝑥𝜑 } ∈ V )
3 1 2 syl ( ∃! 𝑥 𝜑 → { 𝑥𝜑 } ∈ V )