Metamath Proof Explorer


Theorem euabsn

Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004)

Ref Expression
Assertion euabsn ( ∃! 𝑥 𝜑 ↔ ∃ 𝑥 { 𝑥𝜑 } = { 𝑥 } )

Proof

Step Hyp Ref Expression
1 euabsn2 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )
2 nfv 𝑦 { 𝑥𝜑 } = { 𝑥 }
3 nfab1 𝑥 { 𝑥𝜑 }
4 3 nfeq1 𝑥 { 𝑥𝜑 } = { 𝑦 }
5 sneq ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } )
6 5 eqeq2d ( 𝑥 = 𝑦 → ( { 𝑥𝜑 } = { 𝑥 } ↔ { 𝑥𝜑 } = { 𝑦 } ) )
7 2 4 6 cbvexv1 ( ∃ 𝑥 { 𝑥𝜑 } = { 𝑥 } ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )
8 1 7 bitr4i ( ∃! 𝑥 𝜑 ↔ ∃ 𝑥 { 𝑥𝜑 } = { 𝑥 } )