Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euabsn | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑥 { 𝑥 ∣ 𝜑 } = { 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) | |
| 2 | nfv | ⊢ Ⅎ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑥 } | |
| 3 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } | |
| 4 | 3 | nfeq1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } = { 𝑦 } |
| 5 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 6 | 5 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( { 𝑥 ∣ 𝜑 } = { 𝑥 } ↔ { 𝑥 ∣ 𝜑 } = { 𝑦 } ) ) |
| 7 | 2 4 6 | cbvexv1 | ⊢ ( ∃ 𝑥 { 𝑥 ∣ 𝜑 } = { 𝑥 } ↔ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 8 | 1 7 | bitr4i | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑥 { 𝑥 ∣ 𝜑 } = { 𝑥 } ) |