Metamath Proof Explorer


Theorem euabsn2

Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion euabsn2 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )

Proof

Step Hyp Ref Expression
1 eu6 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
2 absn ( { 𝑥𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
3 2 exbii ( ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
4 1 3 bitr4i ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )