Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | euabsn2 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
2 | absn | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
3 | 2 | exbii | ⊢ ( ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
4 | 1 3 | bitr4i | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |