Metamath Proof Explorer


Theorem euae

Description: Two ways to express "exactly one thing exists". To paraphrase the statement and explain the label: there Exists a Unique thing if and only if for All x , x Equals some given (and disjoint) y . Both sides are false in set theory, see Theorems neutru and dtru . (Contributed by NM, 5-Apr-2004) State the theorem using truth constant T. . (Revised by BJ, 7-Oct-2022) Reduce axiom dependencies. (Revised by Wolf Lammen, 2-Mar-2023)

Ref Expression
Assertion euae ( ∃! 𝑥 ⊤ ↔ ∀ 𝑥 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 extru 𝑥
2 1 biantrur ( ∃ 𝑦𝑥 ( ⊤ → 𝑥 = 𝑦 ) ↔ ( ∃ 𝑥 ⊤ ∧ ∃ 𝑦𝑥 ( ⊤ → 𝑥 = 𝑦 ) ) )
3 hbaev ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦𝑥 𝑥 = 𝑦 )
4 3 19.8w ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑦𝑥 𝑥 = 𝑦 )
5 hbnaev ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 )
6 alnex ( ∀ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ¬ ∃ 𝑦𝑥 𝑥 = 𝑦 )
7 5 6 sylib ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∃ 𝑦𝑥 𝑥 = 𝑦 )
8 7 con4i ( ∃ 𝑦𝑥 𝑥 = 𝑦 → ∀ 𝑥 𝑥 = 𝑦 )
9 4 8 impbii ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∃ 𝑦𝑥 𝑥 = 𝑦 )
10 trut ( 𝑥 = 𝑦 ↔ ( ⊤ → 𝑥 = 𝑦 ) )
11 10 albii ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥 ( ⊤ → 𝑥 = 𝑦 ) )
12 11 exbii ( ∃ 𝑦𝑥 𝑥 = 𝑦 ↔ ∃ 𝑦𝑥 ( ⊤ → 𝑥 = 𝑦 ) )
13 9 12 bitri ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∃ 𝑦𝑥 ( ⊤ → 𝑥 = 𝑦 ) )
14 eu3v ( ∃! 𝑥 ⊤ ↔ ( ∃ 𝑥 ⊤ ∧ ∃ 𝑦𝑥 ( ⊤ → 𝑥 = 𝑦 ) ) )
15 2 13 14 3bitr4ri ( ∃! 𝑥 ⊤ ↔ ∀ 𝑥 𝑥 = 𝑦 )