| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extru | ⊢ ∃ 𝑥 ⊤ | 
						
							| 2 | 1 | biantrur | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( ⊤  →  𝑥  =  𝑦 )  ↔  ( ∃ 𝑥 ⊤  ∧  ∃ 𝑦 ∀ 𝑥 ( ⊤  →  𝑥  =  𝑦 ) ) ) | 
						
							| 3 |  | hbaev | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑦 ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 4 | 3 | 19.8w | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑦 ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 5 |  | hbnaev | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 6 |  | alnex | ⊢ ( ∀ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦  ↔  ¬  ∃ 𝑦 ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ¬  ∃ 𝑦 ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 8 | 7 | con4i | ⊢ ( ∃ 𝑦 ∀ 𝑥 𝑥  =  𝑦  →  ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 9 | 4 8 | impbii | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  ↔  ∃ 𝑦 ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 10 |  | trut | ⊢ ( 𝑥  =  𝑦  ↔  ( ⊤  →  𝑥  =  𝑦 ) ) | 
						
							| 11 | 10 | albii | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  ↔  ∀ 𝑥 ( ⊤  →  𝑥  =  𝑦 ) ) | 
						
							| 12 | 11 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 𝑥  =  𝑦  ↔  ∃ 𝑦 ∀ 𝑥 ( ⊤  →  𝑥  =  𝑦 ) ) | 
						
							| 13 | 9 12 | bitri | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  ↔  ∃ 𝑦 ∀ 𝑥 ( ⊤  →  𝑥  =  𝑦 ) ) | 
						
							| 14 |  | eu3v | ⊢ ( ∃! 𝑥 ⊤  ↔  ( ∃ 𝑥 ⊤  ∧  ∃ 𝑦 ∀ 𝑥 ( ⊤  →  𝑥  =  𝑦 ) ) ) | 
						
							| 15 | 2 13 14 | 3bitr4ri | ⊢ ( ∃! 𝑥 ⊤  ↔  ∀ 𝑥 𝑥  =  𝑦 ) |