Metamath Proof Explorer


Theorem euan

Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 24-Dec-2018)

Ref Expression
Hypothesis moanim.1 𝑥 𝜑
Assertion euan ( ∃! 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 moanim.1 𝑥 𝜑
2 euex ( ∃! 𝑥 ( 𝜑𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )
3 simpl ( ( 𝜑𝜓 ) → 𝜑 )
4 1 3 exlimi ( ∃ 𝑥 ( 𝜑𝜓 ) → 𝜑 )
5 2 4 syl ( ∃! 𝑥 ( 𝜑𝜓 ) → 𝜑 )
6 ibar ( 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
7 1 6 eubid ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 ( 𝜑𝜓 ) ) )
8 7 biimprcd ( ∃! 𝑥 ( 𝜑𝜓 ) → ( 𝜑 → ∃! 𝑥 𝜓 ) )
9 5 8 jcai ( ∃! 𝑥 ( 𝜑𝜓 ) → ( 𝜑 ∧ ∃! 𝑥 𝜓 ) )
10 7 biimpa ( ( 𝜑 ∧ ∃! 𝑥 𝜓 ) → ∃! 𝑥 ( 𝜑𝜓 ) )
11 9 10 impbii ( ∃! 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥 𝜓 ) )