Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euanv | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) | |
| 2 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 3 | 2 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 4 | 1 3 | syl | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 5 | ibar | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 6 | 5 | eubidv | ⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 7 | 6 | biimprcd | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → ∃! 𝑥 𝜓 ) ) |
| 8 | 4 7 | jcai | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ ∃! 𝑥 𝜓 ) ) |
| 9 | 6 | biimpa | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 𝜓 ) → ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| 10 | 8 9 | impbii | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥 𝜓 ) ) |