Metamath Proof Explorer


Theorem eubi

Description: Equivalence theorem for the unique existential quantifier. Theorem *14.271 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) Reduce dependencies on axioms. (Revised by BJ, 7-Oct-2022)

Ref Expression
Assertion eubi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exbi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 ) )
2 mobi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) )
3 1 2 anbi12d ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) ) )
4 df-eu ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) )
5 df-eu ( ∃! 𝑥 𝜓 ↔ ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) )
6 3 4 5 3bitr4g ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 ) )