Description: Equivalence theorem for the unique existential quantifier. Theorem *14.271 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) Reduce dependencies on axioms. (Revised by BJ, 7-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | eubi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 ) ) | |
2 | mobi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 ) ) | |
3 | 1 2 | anbi12d | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) ) ) |
4 | df-eu | ⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ) | |
5 | df-eu | ⊢ ( ∃! 𝑥 𝜓 ↔ ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 ) ) |