Metamath Proof Explorer


Theorem eubid

Description: Formula-building rule for the unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) (Proof shortened by Wolf Lammen, 19-Feb-2023)

Ref Expression
Hypotheses eubid.1 𝑥 𝜑
eubid.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion eubid ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 eubid.1 𝑥 𝜑
2 eubid.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 2 alrimi ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
4 eubi ( ∀ 𝑥 ( 𝜓𝜒 ) → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) )
5 3 4 syl ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) )