Metamath Proof Explorer
Description: Formula-building rule for unique existential quantifier (deduction
form). (Contributed by NM, 9-Jul-1994) Reduce axiom dependencies and
shorten proof. (Revised by BJ, 7-Oct-2022)
|
|
Ref |
Expression |
|
Hypothesis |
eubidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
eubidv |
⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eubidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
1
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
eubi |
⊢ ( ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) ) |