Metamath Proof Explorer


Theorem eubidv

Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022)

Ref Expression
Hypothesis eubidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion eubidv ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 eubidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
3 eubi ( ∀ 𝑥 ( 𝜓𝜒 ) → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) )
4 2 3 syl ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 𝜒 ) )