Metamath Proof Explorer


Theorem eubii

Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994) (Revised by Mario Carneiro, 6-Oct-2016) Avoid ax-5 . (Revised by Wolf Lammen, 27-Sep-2023)

Ref Expression
Hypothesis eubii.1 ( 𝜑𝜓 )
Assertion eubii ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 eubii.1 ( 𝜑𝜓 )
2 1 exbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 𝜓 )
3 1 mobii ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 𝜓 )
4 2 3 anbi12i ( ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) )
5 df-eu ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃* 𝑥 𝜑 ) )
6 df-eu ( ∃! 𝑥 𝜓 ↔ ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) )
7 4 5 6 3bitr4i ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 𝜓 )