| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑀 ↔ ( 𝑃 gcd 𝑀 ) = 1 ) ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑀 ↔ ( 𝑃 gcd 𝑀 ) = 1 ) ) |
| 3 |
2
|
anbi2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ¬ 𝑃 ∥ 𝑀 ) ↔ ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝑃 gcd 𝑀 ) = 1 ) ) ) |
| 4 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 5 |
|
coprmdvds |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝑃 gcd 𝑀 ) = 1 ) → 𝑃 ∥ 𝑁 ) ) |
| 6 |
4 5
|
syl3an1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝑃 gcd 𝑀 ) = 1 ) → 𝑃 ∥ 𝑁 ) ) |
| 7 |
3 6
|
sylbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ∧ ¬ 𝑃 ∥ 𝑀 ) → 𝑃 ∥ 𝑁 ) ) |
| 8 |
7
|
expd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑁 ) → ( ¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁 ) ) ) |
| 9 |
|
df-or |
⊢ ( ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) ↔ ( ¬ 𝑃 ∥ 𝑀 → 𝑃 ∥ 𝑁 ) ) |
| 10 |
8 9
|
imbitrrdi |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑁 ) → ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) ) ) |
| 11 |
|
ordvdsmul |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) → 𝑃 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 12 |
4 11
|
syl3an1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) → 𝑃 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 13 |
10 12
|
impbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 · 𝑁 ) ↔ ( 𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁 ) ) ) |