Step |
Hyp |
Ref |
Expression |
1 |
|
eucrct2eupth1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eucrct2eupth1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
eucrct2eupth1.d |
⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) |
4 |
|
eucrct2eupth1.c |
⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) |
5 |
|
eucrct2eupth1.s |
⊢ ( Vtx ‘ 𝑆 ) = 𝑉 |
6 |
|
eucrct2eupth1.g |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝐹 ) ) |
7 |
|
eucrct2eupth1.n |
⊢ ( 𝜑 → 𝑁 = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
8 |
|
eucrct2eupth1.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
9 |
|
eucrct2eupth1.h |
⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) |
10 |
|
eucrct2eupth1.q |
⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) |
11 |
|
eupthiswlk |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
12 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
13 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
14 |
13
|
anim1i |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝐹 ) ) ) |
15 |
|
elnnz |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝐹 ) ) ) |
16 |
14 15
|
sylibr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
17 |
16
|
ex |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
18 |
12 17
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 0 < ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
19 |
3 11 18
|
3syl |
⊢ ( 𝜑 → ( 0 < ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
20 |
6 19
|
mpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
21 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
23 |
7 22
|
eqeltrd |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
24 |
1 2 3 23 8 9 10 5
|
eupthres |
⊢ ( 𝜑 → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |