| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eucrct2eupth1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eucrct2eupth1.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | eucrct2eupth1.d | ⊢ ( 𝜑  →  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | 
						
							| 4 |  | eucrct2eupth1.c | ⊢ ( 𝜑  →  𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | 
						
							| 5 |  | eucrct2eupth1.s | ⊢ ( Vtx ‘ 𝑆 )  =  𝑉 | 
						
							| 6 |  | eucrct2eupth1.g | ⊢ ( 𝜑  →  0  <  ( ♯ ‘ 𝐹 ) ) | 
						
							| 7 |  | eucrct2eupth1.n | ⊢ ( 𝜑  →  𝑁  =  ( ( ♯ ‘ 𝐹 )  −  1 ) ) | 
						
							| 8 |  | eucrct2eupth1.e | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ↾  ( 𝐹  “  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 9 |  | eucrct2eupth1.h | ⊢ 𝐻  =  ( 𝐹  prefix  𝑁 ) | 
						
							| 10 |  | eucrct2eupth1.q | ⊢ 𝑄  =  ( 𝑃  ↾  ( 0 ... 𝑁 ) ) | 
						
							| 11 |  | eupthiswlk | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 12 |  | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 13 |  | nn0z | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 14 | 13 | anim1i | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  0  <  ( ♯ ‘ 𝐹 ) )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℤ  ∧  0  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 15 |  | elnnz | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝐹 )  ∈  ℤ  ∧  0  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  0  <  ( ♯ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 17 | 16 | ex | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 0  <  ( ♯ ‘ 𝐹 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) | 
						
							| 18 | 3 11 12 17 | 4syl | ⊢ ( 𝜑  →  ( 0  <  ( ♯ ‘ 𝐹 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) | 
						
							| 19 | 6 18 | mpd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 20 |  | fzo0end | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 22 | 7 21 | eqeltrd | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 23 | 1 2 3 22 8 9 10 5 | eupthres | ⊢ ( 𝜑  →  𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |