Metamath Proof Explorer


Theorem euen1b

Description: Two ways to express " A has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion euen1b ( 𝐴 ≈ 1o ↔ ∃! 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 euen1 ( ∃! 𝑥 𝑥𝐴 ↔ { 𝑥𝑥𝐴 } ≈ 1o )
2 abid2 { 𝑥𝑥𝐴 } = 𝐴
3 2 breq1i ( { 𝑥𝑥𝐴 } ≈ 1o𝐴 ≈ 1o )
4 1 3 bitr2i ( 𝐴 ≈ 1o ↔ ∃! 𝑥 𝑥𝐴 )