Description: Two ways to express " A has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | euen1b | ⊢ ( 𝐴 ≈ 1o ↔ ∃! 𝑥 𝑥 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euen1 | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ≈ 1o ) | |
2 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 | |
3 | 2 | breq1i | ⊢ ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } ≈ 1o ↔ 𝐴 ≈ 1o ) |
4 | 1 3 | bitr2i | ⊢ ( 𝐴 ≈ 1o ↔ ∃! 𝑥 𝑥 ∈ 𝐴 ) |