| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euendfunc.f |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 2 |
|
euendfunc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
euendfunc.0 |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 4 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐵 ) |
| 6 |
|
eqid |
⊢ ( idfunc ‘ 𝐶 ) = ( idfunc ‘ 𝐶 ) |
| 7 |
|
eqid |
⊢ ( 𝐶 Δfunc 𝐶 ) = ( 𝐶 Δfunc 𝐶 ) |
| 8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 9 |
|
euex |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 11 |
|
funcrcl |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) → ( 𝐶 ∈ Cat ∧ 𝐶 ∈ Cat ) ) |
| 12 |
11
|
simpld |
⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) → 𝐶 ∈ Cat ) |
| 13 |
12
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) → 𝐶 ∈ Cat ) |
| 14 |
10 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 16 |
|
eqid |
⊢ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) |
| 17 |
6
|
idfucl |
⊢ ( 𝐶 ∈ Cat → ( idfunc ‘ 𝐶 ) ∈ ( 𝐶 Func 𝐶 ) ) |
| 18 |
14 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( idfunc ‘ 𝐶 ) ∈ ( 𝐶 Func 𝐶 ) ) |
| 19 |
7 14 14 2 15 16
|
diag1cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ ( 𝐶 Func 𝐶 ) ) |
| 20 |
|
eumo |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) → ∃* 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 21 |
8 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ) |
| 22 |
|
eleq1w |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) ↔ 𝑔 ∈ ( 𝐶 Func 𝐶 ) ) ) |
| 23 |
22
|
mo4 |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝐶 Func 𝐶 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐶 ) ) → 𝑓 = 𝑔 ) ) |
| 24 |
21 23
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐶 ) ) → 𝑓 = 𝑔 ) ) |
| 25 |
|
fvex |
⊢ ( idfunc ‘ 𝐶 ) ∈ V |
| 26 |
|
fvex |
⊢ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ V |
| 27 |
|
simpl |
⊢ ( ( 𝑓 = ( idfunc ‘ 𝐶 ) ∧ 𝑔 = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) → 𝑓 = ( idfunc ‘ 𝐶 ) ) |
| 28 |
27
|
eleq1d |
⊢ ( ( 𝑓 = ( idfunc ‘ 𝐶 ) ∧ 𝑔 = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) → ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) ↔ ( idfunc ‘ 𝐶 ) ∈ ( 𝐶 Func 𝐶 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑓 = ( idfunc ‘ 𝐶 ) ∧ 𝑔 = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) → 𝑔 = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( ( 𝑓 = ( idfunc ‘ 𝐶 ) ∧ 𝑔 = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) → ( 𝑔 ∈ ( 𝐶 Func 𝐶 ) ↔ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ ( 𝐶 Func 𝐶 ) ) ) |
| 31 |
28 30
|
anbi12d |
⊢ ( ( 𝑓 = ( idfunc ‘ 𝐶 ) ∧ 𝑔 = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) → ( ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐶 ) ) ↔ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐶 Func 𝐶 ) ∧ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ ( 𝐶 Func 𝐶 ) ) ) ) |
| 32 |
|
eqeq12 |
⊢ ( ( 𝑓 = ( idfunc ‘ 𝐶 ) ∧ 𝑔 = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) → ( 𝑓 = 𝑔 ↔ ( idfunc ‘ 𝐶 ) = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) ) |
| 33 |
31 32
|
imbi12d |
⊢ ( ( 𝑓 = ( idfunc ‘ 𝐶 ) ∧ 𝑔 = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) → ( ( ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐶 ) ) → 𝑓 = 𝑔 ) ↔ ( ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐶 Func 𝐶 ) ∧ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ ( 𝐶 Func 𝐶 ) ) → ( idfunc ‘ 𝐶 ) = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) ) ) |
| 34 |
33
|
spc2gv |
⊢ ( ( ( idfunc ‘ 𝐶 ) ∈ V ∧ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ V ) → ( ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐶 ) ) → 𝑓 = 𝑔 ) → ( ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐶 Func 𝐶 ) ∧ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ ( 𝐶 Func 𝐶 ) ) → ( idfunc ‘ 𝐶 ) = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) ) ) |
| 35 |
25 26 34
|
mp2an |
⊢ ( ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 ∈ ( 𝐶 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐶 Func 𝐶 ) ) → 𝑓 = 𝑔 ) → ( ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐶 Func 𝐶 ) ∧ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ ( 𝐶 Func 𝐶 ) ) → ( idfunc ‘ 𝐶 ) = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) ) |
| 36 |
24 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐶 Func 𝐶 ) ∧ ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ∈ ( 𝐶 Func 𝐶 ) ) → ( idfunc ‘ 𝐶 ) = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) ) |
| 37 |
18 19 36
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( idfunc ‘ 𝐶 ) = ( ( 1st ‘ ( 𝐶 Δfunc 𝐶 ) ) ‘ 𝑥 ) ) |
| 38 |
6 7 14 2 15 16 37
|
idfudiag1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ TermCat ) |
| 39 |
5 38
|
exlimddv |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |