Step |
Hyp |
Ref |
Expression |
1 |
|
eueq2.1 |
⊢ 𝐴 ∈ V |
2 |
|
eueq2.2 |
⊢ 𝐵 ∈ V |
3 |
|
notnot |
⊢ ( 𝜑 → ¬ ¬ 𝜑 ) |
4 |
1
|
eueqi |
⊢ ∃! 𝑥 𝑥 = 𝐴 |
5 |
|
euanv |
⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( 𝜑 ∧ ∃! 𝑥 𝑥 = 𝐴 ) ) |
6 |
5
|
biimpri |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 𝑥 = 𝐴 ) → ∃! 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ) |
7 |
4 6
|
mpan2 |
⊢ ( 𝜑 → ∃! 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ) |
8 |
|
euorv |
⊢ ( ( ¬ ¬ 𝜑 ∧ ∃! 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ) → ∃! 𝑥 ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
9 |
3 7 8
|
syl2anc |
⊢ ( 𝜑 → ∃! 𝑥 ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
10 |
|
orcom |
⊢ ( ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ¬ 𝜑 ) ) |
11 |
3
|
bianfd |
⊢ ( 𝜑 → ( ¬ 𝜑 ↔ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
12 |
11
|
orbi2d |
⊢ ( 𝜑 → ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ¬ 𝜑 ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
13 |
10 12
|
syl5bb |
⊢ ( 𝜑 → ( ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
14 |
13
|
eubidv |
⊢ ( 𝜑 → ( ∃! 𝑥 ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
15 |
9 14
|
mpbid |
⊢ ( 𝜑 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
16 |
2
|
eueqi |
⊢ ∃! 𝑥 𝑥 = 𝐵 |
17 |
|
euanv |
⊢ ( ∃! 𝑥 ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ( ¬ 𝜑 ∧ ∃! 𝑥 𝑥 = 𝐵 ) ) |
18 |
17
|
biimpri |
⊢ ( ( ¬ 𝜑 ∧ ∃! 𝑥 𝑥 = 𝐵 ) → ∃! 𝑥 ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) |
19 |
16 18
|
mpan2 |
⊢ ( ¬ 𝜑 → ∃! 𝑥 ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) |
20 |
|
euorv |
⊢ ( ( ¬ 𝜑 ∧ ∃! 𝑥 ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) → ∃! 𝑥 ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
21 |
19 20
|
mpdan |
⊢ ( ¬ 𝜑 → ∃! 𝑥 ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
22 |
|
id |
⊢ ( ¬ 𝜑 → ¬ 𝜑 ) |
23 |
22
|
bianfd |
⊢ ( ¬ 𝜑 → ( 𝜑 ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
24 |
23
|
orbi1d |
⊢ ( ¬ 𝜑 → ( ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
25 |
24
|
eubidv |
⊢ ( ¬ 𝜑 → ( ∃! 𝑥 ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
26 |
21 25
|
mpbid |
⊢ ( ¬ 𝜑 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
27 |
15 26
|
pm2.61i |
⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) |