Step |
Hyp |
Ref |
Expression |
1 |
|
eueq3.1 |
⊢ 𝐴 ∈ V |
2 |
|
eueq3.2 |
⊢ 𝐵 ∈ V |
3 |
|
eueq3.3 |
⊢ 𝐶 ∈ V |
4 |
|
eueq3.4 |
⊢ ¬ ( 𝜑 ∧ 𝜓 ) |
5 |
1
|
eueqi |
⊢ ∃! 𝑥 𝑥 = 𝐴 |
6 |
|
ibar |
⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
7 |
|
pm2.45 |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜑 ) |
8 |
4
|
imnani |
⊢ ( 𝜑 → ¬ 𝜓 ) |
9 |
8
|
con2i |
⊢ ( 𝜓 → ¬ 𝜑 ) |
10 |
7 9
|
jaoi |
⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) → ¬ 𝜑 ) |
11 |
10
|
con2i |
⊢ ( 𝜑 → ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) ) |
12 |
7
|
con2i |
⊢ ( 𝜑 → ¬ ¬ ( 𝜑 ∨ 𝜓 ) ) |
13 |
12
|
bianfd |
⊢ ( 𝜑 → ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
14 |
8
|
bianfd |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
15 |
13 14
|
orbi12d |
⊢ ( 𝜑 → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
16 |
11 15
|
mtbid |
⊢ ( 𝜑 → ¬ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
17 |
|
biorf |
⊢ ( ¬ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) |
19 |
6 18
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) |
20 |
|
3orrot |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
21 |
|
df-3or |
⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
22 |
20 21
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
23 |
19 22
|
bitr4di |
⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
24 |
23
|
eubidv |
⊢ ( 𝜑 → ( ∃! 𝑥 𝑥 = 𝐴 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
25 |
5 24
|
mpbii |
⊢ ( 𝜑 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
26 |
3
|
eueqi |
⊢ ∃! 𝑥 𝑥 = 𝐶 |
27 |
|
ibar |
⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
28 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ¬ 𝜓 ) |
29 |
|
pm2.46 |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜓 ) |
30 |
29
|
adantr |
⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) → ¬ 𝜓 ) |
31 |
28 30
|
jaoi |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) → ¬ 𝜓 ) |
32 |
31
|
con2i |
⊢ ( 𝜓 → ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
33 |
|
biorf |
⊢ ( ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) → ( ( 𝜓 ∧ 𝑥 = 𝐶 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜓 → ( ( 𝜓 ∧ 𝑥 = 𝐶 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
35 |
27 34
|
bitrd |
⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
36 |
|
df-3or |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
37 |
35 36
|
bitr4di |
⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
38 |
37
|
eubidv |
⊢ ( 𝜓 → ( ∃! 𝑥 𝑥 = 𝐶 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
39 |
26 38
|
mpbii |
⊢ ( 𝜓 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
40 |
2
|
eueqi |
⊢ ∃! 𝑥 𝑥 = 𝐵 |
41 |
|
ibar |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
42 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜑 ) |
43 |
|
simpl |
⊢ ( ( 𝜓 ∧ 𝑥 = 𝐶 ) → 𝜓 ) |
44 |
42 43
|
orim12i |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( 𝜑 ∨ 𝜓 ) ) |
45 |
|
biorf |
⊢ ( ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) |
46 |
44 45
|
nsyl5 |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) |
47 |
41 46
|
bitrd |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) |
48 |
|
3orcomb |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
49 |
|
df-3or |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
50 |
48 49
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
51 |
47 50
|
bitr4di |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
52 |
51
|
eubidv |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( ∃! 𝑥 𝑥 = 𝐵 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
53 |
40 52
|
mpbii |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
54 |
25 39 53
|
ecase3 |
⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |