Description: There exists a unique set equal to a given set. Inference associated with euequ . See euequ in the case of a setvar. (Contributed by NM, 5-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eueqi.1 | ⊢ 𝐴 ∈ V | |
| Assertion | eueqi | ⊢ ∃! 𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueqi.1 | ⊢ 𝐴 ∈ V | |
| 2 | eueq | ⊢ ( 𝐴 ∈ V ↔ ∃! 𝑥 𝑥 = 𝐴 ) | |
| 3 | 1 2 | mpbi | ⊢ ∃! 𝑥 𝑥 = 𝐴 |