| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eufnfv.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | eufnfv.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 | 1 | mptex | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  V | 
						
							| 4 |  | eqeq2 | ⊢ ( 𝑧  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( 𝑓  =  𝑧  ↔  𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 5 | 4 | bibi2d | ⊢ ( 𝑧  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  𝑧 )  ↔  ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) ) | 
						
							| 6 | 5 | albidv | ⊢ ( 𝑧  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( ∀ 𝑓 ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  𝑧 )  ↔  ∀ 𝑓 ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) ) | 
						
							| 7 | 3 6 | spcev | ⊢ ( ∀ 𝑓 ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  →  ∃ 𝑧 ∀ 𝑓 ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  𝑧 ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 9 | 2 8 | fnmpti | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 | 
						
							| 10 |  | fneq1 | ⊢ ( 𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  ( 𝑓  Fn  𝐴  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) ) | 
						
							| 11 | 9 10 | mpbiri | ⊢ ( 𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  →  𝑓  Fn  𝐴 ) | 
						
							| 12 | 11 | pm4.71ri | ⊢ ( 𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ( 𝑓  Fn  𝐴  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 13 |  | dffn5 | ⊢ ( 𝑓  Fn  𝐴  ↔  𝑓  =  ( 𝑥  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 14 |  | eqeq1 | ⊢ ( 𝑓  =  ( 𝑥  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑥 ) )  →  ( 𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 15 | 13 14 | sylbi | ⊢ ( 𝑓  Fn  𝐴  →  ( 𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 16 |  | fvex | ⊢ ( 𝑓 ‘ 𝑥 )  ∈  V | 
						
							| 17 | 16 | rgenw | ⊢ ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  V | 
						
							| 18 |  | mpteqb | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  V  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 ) ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ ( ( 𝑥  ∈  𝐴  ↦  ( 𝑓 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 ) | 
						
							| 20 | 15 19 | bitrdi | ⊢ ( 𝑓  Fn  𝐴  →  ( 𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 ) ) | 
						
							| 21 | 20 | pm5.32i | ⊢ ( ( 𝑓  Fn  𝐴  ∧  𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ↔  ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 ) ) | 
						
							| 22 | 12 21 | bitr2i | ⊢ ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 23 | 7 22 | mpg | ⊢ ∃ 𝑧 ∀ 𝑓 ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  𝑧 ) | 
						
							| 24 |  | eu6 | ⊢ ( ∃! 𝑓 ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  ∃ 𝑧 ∀ 𝑓 ( ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 )  ↔  𝑓  =  𝑧 ) ) | 
						
							| 25 | 23 24 | mpbir | ⊢ ∃! 𝑓 ( 𝑓  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  =  𝐵 ) |