Metamath Proof Explorer


Theorem eufsn

Description: There is exactly one function into a singleton, assuming ax-rep . See eufsn2 for different axiom requirements. If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1 ( 𝜑𝐵𝑊 )
eufsn.2 ( 𝜑𝐴𝑉 )
Assertion eufsn ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } )

Proof

Step Hyp Ref Expression
1 eufsn.1 ( 𝜑𝐵𝑊 )
2 eufsn.2 ( 𝜑𝐴𝑉 )
3 fconstmpt ( 𝐴 × { 𝐵 } ) = ( 𝑥𝐴𝐵 )
4 mptexg ( 𝐴𝑉 → ( 𝑥𝐴𝐵 ) ∈ V )
5 3 4 eqeltrid ( 𝐴𝑉 → ( 𝐴 × { 𝐵 } ) ∈ V )
6 2 5 syl ( 𝜑 → ( 𝐴 × { 𝐵 } ) ∈ V )
7 1 6 eufsnlem ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } )