Step |
Hyp |
Ref |
Expression |
1 |
|
eufsn.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
2 |
|
eufsnlem.2 |
⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) ∈ 𝑉 ) |
3 |
|
fconst2g |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) |
5 |
4
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) |
6 |
|
eqeq2 |
⊢ ( 𝑔 = ( 𝐴 × { 𝐵 } ) → ( 𝑓 = 𝑔 ↔ 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) |
7 |
6
|
bibi2d |
⊢ ( 𝑔 = ( 𝐴 × { 𝐵 } ) → ( ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = 𝑔 ) ↔ ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) ) |
8 |
7
|
albidv |
⊢ ( 𝑔 = ( 𝐴 × { 𝐵 } ) → ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = 𝑔 ) ↔ ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) ) |
9 |
2 5 8
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = 𝑔 ) ) |
10 |
|
eu6im |
⊢ ( ∃ 𝑔 ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = 𝑔 ) → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |