Metamath Proof Explorer


Theorem euim

Description: Add unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Proof shortened by Wolf Lammen, 1-Oct-2023)

Ref Expression
Assertion euim ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) → ( ∃! 𝑥 𝜓 → ∃! 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 euimmo ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃! 𝑥 𝜓 → ∃* 𝑥 𝜑 ) )
2 exmoeub ( ∃ 𝑥 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) )
3 2 biimpd ( ∃ 𝑥 𝜑 → ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
4 1 3 sylan9r ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ) → ( ∃! 𝑥 𝜓 → ∃! 𝑥 𝜑 ) )