Metamath Proof Explorer


Theorem euimmo

Description: Existential uniqueness implies uniqueness through reverse implication. (Contributed by NM, 22-Apr-1995)

Ref Expression
Assertion euimmo ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃! 𝑥 𝜓 → ∃* 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 eumo ( ∃! 𝑥 𝜓 → ∃* 𝑥 𝜓 )
2 moim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃* 𝑥 𝜓 → ∃* 𝑥 𝜑 ) )
3 1 2 syl5 ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃! 𝑥 𝜓 → ∃* 𝑥 𝜑 ) )