| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euind.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | euind.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 | 2 | cbvexvw | ⊢ ( ∃ 𝑥 𝜑  ↔  ∃ 𝑦 𝜓 ) | 
						
							| 4 | 1 | isseti | ⊢ ∃ 𝑧 𝑧  =  𝐵 | 
						
							| 5 | 4 | biantrur | ⊢ ( 𝜓  ↔  ( ∃ 𝑧 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 𝜓  ↔  ∃ 𝑦 ( ∃ 𝑧 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 7 |  | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑧  =  𝐵  ∧  𝜓 )  ↔  ( ∃ 𝑧 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 8 | 7 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑧  =  𝐵  ∧  𝜓 )  ↔  ∃ 𝑦 ( ∃ 𝑧 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 9 |  | excom | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑧  =  𝐵  ∧  𝜓 )  ↔  ∃ 𝑧 ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 10 | 6 8 9 | 3bitr2i | ⊢ ( ∃ 𝑦 𝜓  ↔  ∃ 𝑧 ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 11 | 3 10 | bitri | ⊢ ( ∃ 𝑥 𝜑  ↔  ∃ 𝑧 ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 ) ) | 
						
							| 12 |  | eqeq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 ) ) | 
						
							| 13 | 12 | imim2i | ⊢ ( ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  →  ( ( 𝜑  ∧  𝜓 )  →  ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 ) ) ) | 
						
							| 14 |  | biimpr | ⊢ ( ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 )  →  ( 𝑧  =  𝐵  →  𝑧  =  𝐴 ) ) | 
						
							| 15 | 14 | imim2i | ⊢ ( ( ( 𝜑  ∧  𝜓 )  →  ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 ) )  →  ( ( 𝜑  ∧  𝜓 )  →  ( 𝑧  =  𝐵  →  𝑧  =  𝐴 ) ) ) | 
						
							| 16 |  | an31 | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑧  =  𝐵 )  ↔  ( ( 𝑧  =  𝐵  ∧  𝜓 )  ∧  𝜑 ) ) | 
						
							| 17 | 16 | imbi1i | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑧  =  𝐵 )  →  𝑧  =  𝐴 )  ↔  ( ( ( 𝑧  =  𝐵  ∧  𝜓 )  ∧  𝜑 )  →  𝑧  =  𝐴 ) ) | 
						
							| 18 |  | impexp | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑧  =  𝐵 )  →  𝑧  =  𝐴 )  ↔  ( ( 𝜑  ∧  𝜓 )  →  ( 𝑧  =  𝐵  →  𝑧  =  𝐴 ) ) ) | 
						
							| 19 |  | impexp | ⊢ ( ( ( ( 𝑧  =  𝐵  ∧  𝜓 )  ∧  𝜑 )  →  𝑧  =  𝐴 )  ↔  ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 20 | 17 18 19 | 3bitr3i | ⊢ ( ( ( 𝜑  ∧  𝜓 )  →  ( 𝑧  =  𝐵  →  𝑧  =  𝐴 ) )  ↔  ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 21 | 15 20 | sylib | ⊢ ( ( ( 𝜑  ∧  𝜓 )  →  ( 𝑧  =  𝐴  ↔  𝑧  =  𝐵 ) )  →  ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 22 | 13 21 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  →  ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 23 | 22 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 24 |  | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) )  ↔  ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 25 | 24 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) )  ↔  ∀ 𝑥 ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 26 |  | 19.21v | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) )  ↔  ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 27 | 25 26 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧  =  𝐵  ∧  𝜓 )  →  ( 𝜑  →  𝑧  =  𝐴 ) )  ↔  ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 28 | 23 27 | sylib | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  →  ( ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 29 | 28 | eximdv | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  →  ( ∃ 𝑧 ∃ 𝑦 ( 𝑧  =  𝐵  ∧  𝜓 )  →  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 30 | 11 29 | biimtrid | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  →  ( ∃ 𝑥 𝜑  →  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 ) ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  ∧  ∃ 𝑥 𝜑 )  →  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 ) ) | 
						
							| 32 |  | pm4.24 | ⊢ ( 𝜑  ↔  ( 𝜑  ∧  𝜑 ) ) | 
						
							| 33 | 32 | biimpi | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝜑 ) ) | 
						
							| 34 |  | anim12 | ⊢ ( ( ( 𝜑  →  𝑧  =  𝐴 )  ∧  ( 𝜑  →  𝑤  =  𝐴 ) )  →  ( ( 𝜑  ∧  𝜑 )  →  ( 𝑧  =  𝐴  ∧  𝑤  =  𝐴 ) ) ) | 
						
							| 35 |  | eqtr3 | ⊢ ( ( 𝑧  =  𝐴  ∧  𝑤  =  𝐴 )  →  𝑧  =  𝑤 ) | 
						
							| 36 | 33 34 35 | syl56 | ⊢ ( ( ( 𝜑  →  𝑧  =  𝐴 )  ∧  ( 𝜑  →  𝑤  =  𝐴 ) )  →  ( 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 37 | 36 | alanimi | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑤  =  𝐴 ) )  →  ∀ 𝑥 ( 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 38 |  | 19.23v | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑧  =  𝑤 )  ↔  ( ∃ 𝑥 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 39 | 37 38 | sylib | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑤  =  𝐴 ) )  →  ( ∃ 𝑥 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 40 | 39 | com12 | ⊢ ( ∃ 𝑥 𝜑  →  ( ( ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) | 
						
							| 41 | 40 | alrimivv | ⊢ ( ∃ 𝑥 𝜑  →  ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  ∧  ∃ 𝑥 𝜑 )  →  ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) | 
						
							| 43 |  | eqeq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  =  𝐴  ↔  𝑤  =  𝐴 ) ) | 
						
							| 44 | 43 | imbi2d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝜑  →  𝑧  =  𝐴 )  ↔  ( 𝜑  →  𝑤  =  𝐴 ) ) ) | 
						
							| 45 | 44 | albidv | ⊢ ( 𝑧  =  𝑤  →  ( ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑤  =  𝐴 ) ) ) | 
						
							| 46 | 45 | eu4 | ⊢ ( ∃! 𝑧 ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ↔  ( ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ∧  ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 )  ∧  ∀ 𝑥 ( 𝜑  →  𝑤  =  𝐴 ) )  →  𝑧  =  𝑤 ) ) ) | 
						
							| 47 | 31 42 46 | sylanbrc | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐵 )  ∧  ∃ 𝑥 𝜑 )  →  ∃! 𝑧 ∀ 𝑥 ( 𝜑  →  𝑧  =  𝐴 ) ) |