Step |
Hyp |
Ref |
Expression |
1 |
|
euind.1 |
⊢ 𝐵 ∈ V |
2 |
|
euind.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
2
|
cbvexvw |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) |
4 |
1
|
isseti |
⊢ ∃ 𝑧 𝑧 = 𝐵 |
5 |
4
|
biantrur |
⊢ ( 𝜓 ↔ ( ∃ 𝑧 𝑧 = 𝐵 ∧ 𝜓 ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 𝜓 ↔ ∃ 𝑦 ( ∃ 𝑧 𝑧 = 𝐵 ∧ 𝜓 ) ) |
7 |
|
19.41v |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ( ∃ 𝑧 𝑧 = 𝐵 ∧ 𝜓 ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∃ 𝑧 𝑧 = 𝐵 ∧ 𝜓 ) ) |
9 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
10 |
6 8 9
|
3bitr2i |
⊢ ( ∃ 𝑦 𝜓 ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
11 |
3 10
|
bitri |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
12 |
|
eqeq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) |
13 |
12
|
imim2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
14 |
|
biimpr |
⊢ ( ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) |
15 |
14
|
imim2i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) |
16 |
|
an31 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑧 = 𝐵 ) ↔ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) ∧ 𝜑 ) ) |
17 |
16
|
imbi1i |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( ( 𝑧 = 𝐵 ∧ 𝜓 ) ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |
18 |
|
impexp |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) |
19 |
|
impexp |
⊢ ( ( ( ( 𝑧 = 𝐵 ∧ 𝜓 ) ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
20 |
17 18 19
|
3bitr3i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
21 |
15 20
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
22 |
13 21
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
23 |
22
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
24 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
25 |
24
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ↔ ∀ 𝑥 ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
26 |
|
19.21v |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
27 |
25 26
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
28 |
23 27
|
sylib |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
29 |
28
|
eximdv |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ∃ 𝑧 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
30 |
11 29
|
syl5bi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
31 |
30
|
imp |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 𝜑 ) → ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) |
32 |
|
pm4.24 |
⊢ ( 𝜑 ↔ ( 𝜑 ∧ 𝜑 ) ) |
33 |
32
|
biimpi |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝜑 ) ) |
34 |
|
anim12 |
⊢ ( ( ( 𝜑 → 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝑤 = 𝐴 ) ) → ( ( 𝜑 ∧ 𝜑 ) → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) ) ) |
35 |
|
eqtr3 |
⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) → 𝑧 = 𝑤 ) |
36 |
33 34 35
|
syl56 |
⊢ ( ( ( 𝜑 → 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝑤 = 𝐴 ) ) → ( 𝜑 → 𝑧 = 𝑤 ) ) |
37 |
36
|
alanimi |
⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → ∀ 𝑥 ( 𝜑 → 𝑧 = 𝑤 ) ) |
38 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ( ∃ 𝑥 𝜑 → 𝑧 = 𝑤 ) ) |
39 |
37 38
|
sylib |
⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → ( ∃ 𝑥 𝜑 → 𝑧 = 𝑤 ) ) |
40 |
39
|
com12 |
⊢ ( ∃ 𝑥 𝜑 → ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
41 |
40
|
alrimivv |
⊢ ( ∃ 𝑥 𝜑 → ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
42 |
41
|
adantl |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 𝜑 ) → ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
43 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐴 ↔ 𝑤 = 𝐴 ) ) |
44 |
43
|
imbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝜑 → 𝑧 = 𝐴 ) ↔ ( 𝜑 → 𝑤 = 𝐴 ) ) ) |
45 |
44
|
albidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) ) |
46 |
45
|
eu4 |
⊢ ( ∃! 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ↔ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) ) |
47 |
31 42 46
|
sylanbrc |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 𝜑 ) → ∃! 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) |