Step |
Hyp |
Ref |
Expression |
1 |
|
equequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
2 |
1
|
bibi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
3 |
2
|
albidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
4 |
3
|
sps |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
5 |
4
|
drex1 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
6 |
|
hbnae |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
7 |
|
hbnae |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
8 |
6 7
|
alrimih |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑦 ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
9 |
|
ax-5 |
⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ) |
10 |
|
equequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
11 |
10
|
bibi2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
12 |
11
|
albidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
13 |
12
|
notbid |
⊢ ( 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
14 |
9 13
|
dvelim |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
15 |
14
|
naecoms |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
16 |
|
ax-5 |
⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) → ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ) |
17 |
|
equequ2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑧 ) ) |
18 |
17
|
bibi2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
19 |
18
|
albidv |
⊢ ( 𝑤 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
20 |
19
|
notbid |
⊢ ( 𝑤 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
21 |
16 20
|
dvelim |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
22 |
3
|
notbid |
⊢ ( 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
23 |
22
|
a1i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) ) |
24 |
15 21 23
|
cbv2h |
⊢ ( ∀ 𝑦 ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
25 |
8 24
|
syl |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
26 |
25
|
notbid |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
27 |
|
df-ex |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
28 |
|
df-ex |
⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ¬ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
29 |
26 27 28
|
3bitr4g |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
30 |
5 29
|
pm2.61i |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |