| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
| 2 |
1
|
bibi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 3 |
2
|
albidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 4 |
3
|
sps |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 5 |
4
|
drex1 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 6 |
|
hbnae |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 7 |
|
hbnae |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 8 |
6 7
|
alrimih |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑦 ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 9 |
|
ax-5 |
⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ) |
| 10 |
|
equequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
| 11 |
10
|
bibi2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 12 |
11
|
albidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 13 |
12
|
notbid |
⊢ ( 𝑤 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 14 |
9 13
|
dvelim |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 15 |
14
|
naecoms |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 16 |
|
ax-5 |
⊢ ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) → ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ) |
| 17 |
|
equequ2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑧 ) ) |
| 18 |
17
|
bibi2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 19 |
18
|
albidv |
⊢ ( 𝑤 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 20 |
19
|
notbid |
⊢ ( 𝑤 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 21 |
16 20
|
dvelim |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 22 |
3
|
notbid |
⊢ ( 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 23 |
22
|
a1i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑦 = 𝑧 → ( ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) ) |
| 24 |
15 21 23
|
cbv2h |
⊢ ( ∀ 𝑦 ∀ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 25 |
8 24
|
syl |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 26 |
25
|
notbid |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 27 |
|
df-ex |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑦 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 28 |
|
df-ex |
⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ¬ ∀ 𝑧 ¬ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |
| 29 |
26 27 28
|
3bitr4g |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
| 30 |
5 29
|
pm2.61i |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) |