Metamath Proof Explorer


Theorem eulerid

Description: Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion eulerid ( ( exp ‘ ( i · π ) ) + 1 ) = 0

Proof

Step Hyp Ref Expression
1 efipi ( exp ‘ ( i · π ) ) = - 1
2 1 oveq1i ( ( exp ‘ ( i · π ) ) + 1 ) = ( - 1 + 1 )
3 ax-1cn 1 ∈ ℂ
4 neg1cn - 1 ∈ ℂ
5 1pneg1e0 ( 1 + - 1 ) = 0
6 3 4 5 addcomli ( - 1 + 1 ) = 0
7 2 6 eqtri ( ( exp ‘ ( i · π ) ) + 1 ) = 0