Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eqid |
⊢ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑥 → ( ( 2 ↑ 𝑏 ) · 𝑎 ) = ( ( 2 ↑ 𝑏 ) · 𝑥 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑏 = 𝑦 → ( 2 ↑ 𝑏 ) = ( 2 ↑ 𝑦 ) ) |
7 |
6
|
oveq1d |
⊢ ( 𝑏 = 𝑦 → ( ( 2 ↑ 𝑏 ) · 𝑥 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
8 |
5 7
|
cbvmpov |
⊢ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) = ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑟 = 𝑚 → ( 𝑟 supp ∅ ) = ( 𝑚 supp ∅ ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑟 = 𝑚 → ( ( 𝑟 supp ∅ ) ∈ Fin ↔ ( 𝑚 supp ∅ ) ∈ Fin ) ) |
11 |
10
|
cbvrabv |
⊢ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } = { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } |
12 |
11
|
eqcomi |
⊢ { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
13 |
|
fveq1 |
⊢ ( 𝑡 = 𝑟 → ( 𝑡 ‘ 𝑎 ) = ( 𝑟 ‘ 𝑎 ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑡 = 𝑟 → ( 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ↔ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑡 = 𝑟 → ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) ↔ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) ) ) |
16 |
15
|
opabbidv |
⊢ ( 𝑡 = 𝑟 → { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) } ) |
17 |
16
|
cbvmptv |
⊢ ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) = ( 𝑟 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) } ) |
18 |
|
oveq1 |
⊢ ( 𝑚 = 𝑠 → ( 𝑚 supp ∅ ) = ( 𝑠 supp ∅ ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑚 = 𝑠 → ( ( 𝑚 supp ∅ ) ∈ Fin ↔ ( 𝑠 supp ∅ ) ∈ Fin ) ) |
20 |
19
|
cbvrabv |
⊢ { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } = { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } |
21 |
20
|
eqcomi |
⊢ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } = { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } |
22 |
|
simpl |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → 𝑎 = 𝑥 ) |
23 |
22
|
eleq1d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ↔ 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) |
24 |
|
simpr |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → 𝑏 = 𝑦 ) |
25 |
22
|
fveq2d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑟 ‘ 𝑎 ) = ( 𝑟 ‘ 𝑥 ) ) |
26 |
24 25
|
eleq12d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ↔ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) ) |
27 |
23 26
|
anbi12d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) ↔ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) ) ) |
28 |
27
|
cbvopabv |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } |
29 |
21 28
|
mpteq12i |
⊢ ( 𝑟 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) } ) = ( 𝑟 ∈ { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
30 |
17 29
|
eqtri |
⊢ ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) = ( 𝑟 ∈ { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
31 |
|
cnveq |
⊢ ( ℎ = 𝑓 → ◡ ℎ = ◡ 𝑓 ) |
32 |
31
|
imaeq1d |
⊢ ( ℎ = 𝑓 → ( ◡ ℎ “ ℕ ) = ( ◡ 𝑓 “ ℕ ) ) |
33 |
32
|
eleq1d |
⊢ ( ℎ = 𝑓 → ( ( ◡ ℎ “ ℕ ) ∈ Fin ↔ ( ◡ 𝑓 “ ℕ ) ∈ Fin ) ) |
34 |
33
|
cbvabv |
⊢ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
35 |
32
|
sseq1d |
⊢ ( ℎ = 𝑓 → ( ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ↔ ( ◡ 𝑓 “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) |
36 |
35
|
cbvrabv |
⊢ { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } |
37 |
|
reseq1 |
⊢ ( 𝑜 = 𝑞 → ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) = ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) |
38 |
37
|
coeq2d |
⊢ ( 𝑜 = 𝑞 → ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) = ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) |
39 |
38
|
fveq2d |
⊢ ( 𝑜 = 𝑞 → ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) = ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) |
40 |
39
|
imaeq2d |
⊢ ( 𝑜 = 𝑞 → ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) = ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝑜 = 𝑞 → ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) = ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) |
42 |
41
|
cbvmptv |
⊢ ( 𝑜 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) = ( 𝑞 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) |
43 |
8
|
eqcomi |
⊢ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) = ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) |
44 |
43
|
imaeq1i |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) = ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) |
45 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } |
46 |
11 45
|
mpteq12i |
⊢ ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) = ( 𝑟 ∈ { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
47 |
|
fveq1 |
⊢ ( 𝑟 = 𝑡 → ( 𝑟 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑎 ) ) |
48 |
47
|
eleq2d |
⊢ ( 𝑟 = 𝑡 → ( 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ↔ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) ) |
49 |
48
|
anbi2d |
⊢ ( 𝑟 = 𝑡 → ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) ↔ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) ) ) |
50 |
49
|
opabbidv |
⊢ ( 𝑟 = 𝑡 → { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) |
51 |
50
|
cbvmptv |
⊢ ( 𝑟 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟 ‘ 𝑎 ) ) } ) = ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) |
52 |
46 29 51
|
3eqtr2i |
⊢ ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) = ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) |
53 |
52
|
fveq1i |
⊢ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) = ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) |
54 |
53
|
imaeq2i |
⊢ ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) = ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) |
55 |
44 54
|
eqtri |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) = ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) |
56 |
55
|
fveq2i |
⊢ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) = ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) |
57 |
56
|
mpteq2i |
⊢ ( 𝑞 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) = ( 𝑞 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) |
58 |
42 57
|
eqtri |
⊢ ( 𝑜 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) = ( 𝑞 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡 ‘ 𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) |
59 |
|
eqid |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) |
60 |
1 2 3 4 8 12 30 34 36 58 59
|
eulerpartlemn |
⊢ ( ( 𝑜 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) : 𝑂 –1-1-onto→ 𝐷 |
61 |
|
ovex |
⊢ ( ℕ0 ↑m ℕ ) ∈ V |
62 |
61
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∈ V |
63 |
62
|
inex1 |
⊢ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∈ V |
64 |
63
|
mptex |
⊢ ( 𝑜 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ∈ V |
65 |
64
|
resex |
⊢ ( ( 𝑜 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) ∈ V |
66 |
|
f1oeq1 |
⊢ ( 𝑔 = ( ( 𝑜 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) → ( 𝑔 : 𝑂 –1-1-onto→ 𝐷 ↔ ( ( 𝑜 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) : 𝑂 –1-1-onto→ 𝐷 ) ) |
67 |
65 66
|
spcev |
⊢ ( ( ( 𝑜 ∈ ( { ℎ ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ ℎ “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ℎ ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) : 𝑂 –1-1-onto→ 𝐷 → ∃ 𝑔 𝑔 : 𝑂 –1-1-onto→ 𝐷 ) |
68 |
|
bren |
⊢ ( 𝑂 ≈ 𝐷 ↔ ∃ 𝑔 𝑔 : 𝑂 –1-1-onto→ 𝐷 ) |
69 |
|
hasheni |
⊢ ( 𝑂 ≈ 𝐷 → ( ♯ ‘ 𝑂 ) = ( ♯ ‘ 𝐷 ) ) |
70 |
68 69
|
sylbir |
⊢ ( ∃ 𝑔 𝑔 : 𝑂 –1-1-onto→ 𝐷 → ( ♯ ‘ 𝑂 ) = ( ♯ ‘ 𝐷 ) ) |
71 |
60 67 70
|
mp2b |
⊢ ( ♯ ‘ 𝑂 ) = ( ♯ ‘ 𝐷 ) |