Metamath Proof Explorer


Theorem eulerpart

Description: Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let P be the set of all partitions of N , represented as multisets of positive integers, which is to say functions from NN to NN0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals N . Then the set O of all partitions that only consist of odd numbers and the set D of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
Assertion eulerpart ( ♯ ‘ 𝑂 ) = ( ♯ ‘ 𝐷 )

Proof

Step Hyp Ref Expression
1 eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
2 eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
3 eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
4 eqid { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
5 oveq2 ( 𝑎 = 𝑥 → ( ( 2 ↑ 𝑏 ) · 𝑎 ) = ( ( 2 ↑ 𝑏 ) · 𝑥 ) )
6 oveq2 ( 𝑏 = 𝑦 → ( 2 ↑ 𝑏 ) = ( 2 ↑ 𝑦 ) )
7 6 oveq1d ( 𝑏 = 𝑦 → ( ( 2 ↑ 𝑏 ) · 𝑥 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
8 5 7 cbvmpov ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) = ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
9 oveq1 ( 𝑟 = 𝑚 → ( 𝑟 supp ∅ ) = ( 𝑚 supp ∅ ) )
10 9 eleq1d ( 𝑟 = 𝑚 → ( ( 𝑟 supp ∅ ) ∈ Fin ↔ ( 𝑚 supp ∅ ) ∈ Fin ) )
11 10 cbvrabv { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } = { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin }
12 11 eqcomi { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
13 fveq1 ( 𝑡 = 𝑟 → ( 𝑡𝑎 ) = ( 𝑟𝑎 ) )
14 13 eleq2d ( 𝑡 = 𝑟 → ( 𝑏 ∈ ( 𝑡𝑎 ) ↔ 𝑏 ∈ ( 𝑟𝑎 ) ) )
15 14 anbi2d ( 𝑡 = 𝑟 → ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) ↔ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) ) )
16 15 opabbidv ( 𝑡 = 𝑟 → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) } )
17 16 cbvmptv ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } ) = ( 𝑟 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) } )
18 oveq1 ( 𝑚 = 𝑠 → ( 𝑚 supp ∅ ) = ( 𝑠 supp ∅ ) )
19 18 eleq1d ( 𝑚 = 𝑠 → ( ( 𝑚 supp ∅ ) ∈ Fin ↔ ( 𝑠 supp ∅ ) ∈ Fin ) )
20 19 cbvrabv { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } = { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin }
21 20 eqcomi { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } = { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin }
22 simpl ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → 𝑎 = 𝑥 )
23 22 eleq1d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ↔ 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) )
24 simpr ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → 𝑏 = 𝑦 )
25 22 fveq2d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑟𝑎 ) = ( 𝑟𝑥 ) )
26 24 25 eleq12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( 𝑏 ∈ ( 𝑟𝑎 ) ↔ 𝑦 ∈ ( 𝑟𝑥 ) ) )
27 23 26 anbi12d ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) ↔ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) ) )
28 27 cbvopabv { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) }
29 21 28 mpteq12i ( 𝑟 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) } ) = ( 𝑟 ∈ { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } )
30 17 29 eqtri ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } ) = ( 𝑟 ∈ { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } )
31 cnveq ( = 𝑓 = 𝑓 )
32 31 imaeq1d ( = 𝑓 → ( “ ℕ ) = ( 𝑓 “ ℕ ) )
33 32 eleq1d ( = 𝑓 → ( ( “ ℕ ) ∈ Fin ↔ ( 𝑓 “ ℕ ) ∈ Fin ) )
34 33 cbvabv { ∣ ( “ ℕ ) ∈ Fin } = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
35 32 sseq1d ( = 𝑓 → ( ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ↔ ( 𝑓 “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) )
36 35 cbvrabv { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } }
37 reseq1 ( 𝑜 = 𝑞 → ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) = ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) )
38 37 coeq2d ( 𝑜 = 𝑞 → ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) = ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) )
39 38 fveq2d ( 𝑜 = 𝑞 → ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) = ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) )
40 39 imaeq2d ( 𝑜 = 𝑞 → ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) = ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) )
41 40 fveq2d ( 𝑜 = 𝑞 → ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) = ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) )
42 41 cbvmptv ( 𝑜 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) = ( 𝑞 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) )
43 8 eqcomi ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) = ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) )
44 43 imaeq1i ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) = ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) )
45 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) }
46 11 45 mpteq12i ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) = ( 𝑟 ∈ { 𝑚 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑚 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } )
47 fveq1 ( 𝑟 = 𝑡 → ( 𝑟𝑎 ) = ( 𝑡𝑎 ) )
48 47 eleq2d ( 𝑟 = 𝑡 → ( 𝑏 ∈ ( 𝑟𝑎 ) ↔ 𝑏 ∈ ( 𝑡𝑎 ) ) )
49 48 anbi2d ( 𝑟 = 𝑡 → ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) ↔ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) ) )
50 49 opabbidv ( 𝑟 = 𝑡 → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } )
51 50 cbvmptv ( 𝑟 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑟𝑎 ) ) } ) = ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } )
52 46 29 51 3eqtr2i ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) = ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } )
53 52 fveq1i ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) = ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) )
54 53 imaeq2i ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) = ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) )
55 44 54 eqtri ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) = ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) )
56 55 fveq2i ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) = ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) )
57 56 mpteq2i ( 𝑞 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) = ( 𝑞 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) )
58 42 57 eqtri ( 𝑜 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) = ( 𝑞 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑏 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑏 ) · 𝑎 ) ) “ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑠 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑏 ∈ ( 𝑡𝑎 ) ) } ) ‘ ( bits ∘ ( 𝑞 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) )
59 eqid ( 𝑓 ∈ ( ( ℕ0m ℕ ) ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) ) = ( 𝑓 ∈ ( ( ℕ0m ℕ ) ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) )
60 1 2 3 4 8 12 30 34 36 58 59 eulerpartlemn ( ( 𝑜 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) : 𝑂1-1-onto𝐷
61 ovex ( ℕ0m ℕ ) ∈ V
62 61 rabex { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∈ V
63 62 inex1 ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ∈ V
64 63 mptex ( 𝑜 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ∈ V
65 64 resex ( ( 𝑜 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) ∈ V
66 f1oeq1 ( 𝑔 = ( ( 𝑜 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) → ( 𝑔 : 𝑂1-1-onto𝐷 ↔ ( ( 𝑜 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) : 𝑂1-1-onto𝐷 ) )
67 65 66 spcev ( ( ( 𝑜 ∈ ( { ∈ ( ℕ0m ℕ ) ∣ ( “ ℕ ) ⊆ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } } ∩ { ∣ ( “ ℕ ) ∈ Fin } ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) “ ( ( 𝑟 ∈ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ∧ 𝑦 ∈ ( 𝑟𝑥 ) ) } ) ‘ ( bits ∘ ( 𝑜 ↾ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ) ) ) ) ) ) ↾ 𝑂 ) : 𝑂1-1-onto𝐷 → ∃ 𝑔 𝑔 : 𝑂1-1-onto𝐷 )
68 bren ( 𝑂𝐷 ↔ ∃ 𝑔 𝑔 : 𝑂1-1-onto𝐷 )
69 hasheni ( 𝑂𝐷 → ( ♯ ‘ 𝑂 ) = ( ♯ ‘ 𝐷 ) )
70 68 69 sylbir ( ∃ 𝑔 𝑔 : 𝑂1-1-onto𝐷 → ( ♯ ‘ 𝑂 ) = ( ♯ ‘ 𝐷 ) )
71 60 67 70 mp2b ( ♯ ‘ 𝑂 ) = ( ♯ ‘ 𝐷 )