Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
11 |
|
nnex |
⊢ ℕ ∈ V |
12 |
|
indf1ofs |
⊢ ( ℕ ∈ V → ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ) |
13 |
11 12
|
ax-mp |
⊢ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } |
14 |
|
incom |
⊢ ( ( { 0 , 1 } ↑m ℕ ) ∩ { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = ( { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ ( { 0 , 1 } ↑m ℕ ) ) |
15 |
8
|
ineq2i |
⊢ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) = ( ( { 0 , 1 } ↑m ℕ ) ∩ { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
16 |
|
dfrab2 |
⊢ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = ( { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ ( { 0 , 1 } ↑m ℕ ) ) |
17 |
14 15 16
|
3eqtr4i |
⊢ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) = { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
18 |
|
elmapfun |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → Fun 𝑓 ) |
19 |
|
elmapi |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → 𝑓 : ℕ ⟶ { 0 , 1 } ) |
20 |
19
|
frnd |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → ran 𝑓 ⊆ { 0 , 1 } ) |
21 |
|
fimacnvinrn2 |
⊢ ( ( Fun 𝑓 ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑓 “ ( ℕ ∩ { 0 , 1 } ) ) ) |
22 |
|
df-pr |
⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) |
23 |
22
|
ineq2i |
⊢ ( ℕ ∩ { 0 , 1 } ) = ( ℕ ∩ ( { 0 } ∪ { 1 } ) ) |
24 |
|
indi |
⊢ ( ℕ ∩ ( { 0 } ∪ { 1 } ) ) = ( ( ℕ ∩ { 0 } ) ∪ ( ℕ ∩ { 1 } ) ) |
25 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
26 |
|
disjsn |
⊢ ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ ) |
27 |
25 26
|
mpbir |
⊢ ( ℕ ∩ { 0 } ) = ∅ |
28 |
|
1nn |
⊢ 1 ∈ ℕ |
29 |
|
1ex |
⊢ 1 ∈ V |
30 |
29
|
snss |
⊢ ( 1 ∈ ℕ ↔ { 1 } ⊆ ℕ ) |
31 |
28 30
|
mpbi |
⊢ { 1 } ⊆ ℕ |
32 |
|
dfss |
⊢ ( { 1 } ⊆ ℕ ↔ { 1 } = ( { 1 } ∩ ℕ ) ) |
33 |
31 32
|
mpbi |
⊢ { 1 } = ( { 1 } ∩ ℕ ) |
34 |
|
incom |
⊢ ( { 1 } ∩ ℕ ) = ( ℕ ∩ { 1 } ) |
35 |
33 34
|
eqtr2i |
⊢ ( ℕ ∩ { 1 } ) = { 1 } |
36 |
27 35
|
uneq12i |
⊢ ( ( ℕ ∩ { 0 } ) ∪ ( ℕ ∩ { 1 } ) ) = ( ∅ ∪ { 1 } ) |
37 |
23 24 36
|
3eqtri |
⊢ ( ℕ ∩ { 0 , 1 } ) = ( ∅ ∪ { 1 } ) |
38 |
|
uncom |
⊢ ( ∅ ∪ { 1 } ) = ( { 1 } ∪ ∅ ) |
39 |
|
un0 |
⊢ ( { 1 } ∪ ∅ ) = { 1 } |
40 |
37 38 39
|
3eqtri |
⊢ ( ℕ ∩ { 0 , 1 } ) = { 1 } |
41 |
40
|
imaeq2i |
⊢ ( ◡ 𝑓 “ ( ℕ ∩ { 0 , 1 } ) ) = ( ◡ 𝑓 “ { 1 } ) |
42 |
21 41
|
eqtrdi |
⊢ ( ( Fun 𝑓 ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑓 “ { 1 } ) ) |
43 |
18 20 42
|
syl2anc |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑓 “ { 1 } ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝑓 “ { 1 } ) ∈ Fin ) ) |
45 |
44
|
rabbiia |
⊢ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } |
46 |
17 45
|
eqtr2i |
⊢ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } = ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |
47 |
|
f1oeq3 |
⊢ ( { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } = ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) → ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ↔ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) ) |
48 |
46 47
|
ax-mp |
⊢ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ↔ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
49 |
13 48
|
mpbi |
⊢ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |
50 |
4 5
|
oddpwdc |
⊢ 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ |
51 |
|
f1opwfi |
⊢ ( 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ → ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) : ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) |
52 |
50 51
|
ax-mp |
⊢ ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) : ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) |
53 |
1 2 3 4 5 6 7
|
eulerpartlem1 |
⊢ 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
54 |
|
bitsf1o |
⊢ ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) |
55 |
54
|
a1i |
⊢ ( ⊤ → ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) ) |
56 |
4 11
|
rabex2 |
⊢ 𝐽 ∈ V |
57 |
56
|
a1i |
⊢ ( ⊤ → 𝐽 ∈ V ) |
58 |
|
nn0ex |
⊢ ℕ0 ∈ V |
59 |
58
|
a1i |
⊢ ( ⊤ → ℕ0 ∈ V ) |
60 |
58
|
pwex |
⊢ 𝒫 ℕ0 ∈ V |
61 |
60
|
inex1 |
⊢ ( 𝒫 ℕ0 ∩ Fin ) ∈ V |
62 |
61
|
a1i |
⊢ ( ⊤ → ( 𝒫 ℕ0 ∩ Fin ) ∈ V ) |
63 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
64 |
63
|
a1i |
⊢ ( ⊤ → 0 ∈ ℕ0 ) |
65 |
|
fvres |
⊢ ( 0 ∈ ℕ0 → ( ( bits ↾ ℕ0 ) ‘ 0 ) = ( bits ‘ 0 ) ) |
66 |
63 65
|
ax-mp |
⊢ ( ( bits ↾ ℕ0 ) ‘ 0 ) = ( bits ‘ 0 ) |
67 |
|
0bits |
⊢ ( bits ‘ 0 ) = ∅ |
68 |
66 67
|
eqtr2i |
⊢ ∅ = ( ( bits ↾ ℕ0 ) ‘ 0 ) |
69 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → 𝑓 : 𝐽 ⟶ ℕ0 ) |
70 |
|
frnnn0supp |
⊢ ( ( 𝐽 ∈ V ∧ 𝑓 : 𝐽 ⟶ ℕ0 ) → ( 𝑓 supp 0 ) = ( ◡ 𝑓 “ ℕ ) ) |
71 |
56 69 70
|
sylancr |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → ( 𝑓 supp 0 ) = ( ◡ 𝑓 “ ℕ ) ) |
72 |
71
|
eleq1d |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → ( ( 𝑓 supp 0 ) ∈ Fin ↔ ( ◡ 𝑓 “ ℕ ) ∈ Fin ) ) |
73 |
72
|
rabbiia |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( 𝑓 supp 0 ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
74 |
|
elmapfun |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → Fun 𝑓 ) |
75 |
|
vex |
⊢ 𝑓 ∈ V |
76 |
|
funisfsupp |
⊢ ( ( Fun 𝑓 ∧ 𝑓 ∈ V ∧ 0 ∈ ℕ0 ) → ( 𝑓 finSupp 0 ↔ ( 𝑓 supp 0 ) ∈ Fin ) ) |
77 |
75 63 76
|
mp3an23 |
⊢ ( Fun 𝑓 → ( 𝑓 finSupp 0 ↔ ( 𝑓 supp 0 ) ∈ Fin ) ) |
78 |
74 77
|
syl |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → ( 𝑓 finSupp 0 ↔ ( 𝑓 supp 0 ) ∈ Fin ) ) |
79 |
78
|
rabbiia |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ 𝑓 finSupp 0 } = { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( 𝑓 supp 0 ) ∈ Fin } |
80 |
|
incom |
⊢ ( { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ ( ℕ0 ↑m 𝐽 ) ) = ( ( ℕ0 ↑m 𝐽 ) ∩ { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
81 |
|
dfrab2 |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = ( { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ ( ℕ0 ↑m 𝐽 ) ) |
82 |
8
|
ineq2i |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = ( ( ℕ0 ↑m 𝐽 ) ∩ { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
83 |
80 81 82
|
3eqtr4ri |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
84 |
73 79 83
|
3eqtr4ri |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ 𝑓 finSupp 0 } |
85 |
|
elmapfun |
⊢ ( 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) → Fun 𝑟 ) |
86 |
|
vex |
⊢ 𝑟 ∈ V |
87 |
|
0ex |
⊢ ∅ ∈ V |
88 |
|
funisfsupp |
⊢ ( ( Fun 𝑟 ∧ 𝑟 ∈ V ∧ ∅ ∈ V ) → ( 𝑟 finSupp ∅ ↔ ( 𝑟 supp ∅ ) ∈ Fin ) ) |
89 |
86 87 88
|
mp3an23 |
⊢ ( Fun 𝑟 → ( 𝑟 finSupp ∅ ↔ ( 𝑟 supp ∅ ) ∈ Fin ) ) |
90 |
89
|
bicomd |
⊢ ( Fun 𝑟 → ( ( 𝑟 supp ∅ ) ∈ Fin ↔ 𝑟 finSupp ∅ ) ) |
91 |
85 90
|
syl |
⊢ ( 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) → ( ( 𝑟 supp ∅ ) ∈ Fin ↔ 𝑟 finSupp ∅ ) ) |
92 |
91
|
rabbiia |
⊢ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ 𝑟 finSupp ∅ } |
93 |
55 57 59 62 64 68 84 92
|
fcobijfs |
⊢ ( ⊤ → ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) |
94 |
|
elinel1 |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ) |
95 |
|
frn |
⊢ ( 𝑓 : 𝐽 ⟶ ℕ0 → ran 𝑓 ⊆ ℕ0 ) |
96 |
|
cores |
⊢ ( ran 𝑓 ⊆ ℕ0 → ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) = ( bits ∘ 𝑓 ) ) |
97 |
69 95 96
|
3syl |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) = ( bits ∘ 𝑓 ) ) |
98 |
94 97
|
syl |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) = ( bits ∘ 𝑓 ) ) |
99 |
98
|
mpteq2ia |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) |
100 |
99
|
eqcomi |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) |
101 |
|
f1oeq1 |
⊢ ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) → ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↔ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) ) |
102 |
100 101
|
mp1i |
⊢ ( ⊤ → ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↔ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) ) |
103 |
93 102
|
mpbird |
⊢ ( ⊤ → ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) |
104 |
103
|
mptru |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
105 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ |
106 |
4 105
|
eqsstri |
⊢ 𝐽 ⊆ ℕ |
107 |
11 58 106
|
3pm3.2i |
⊢ ( ℕ ∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ ) |
108 |
|
cnveq |
⊢ ( 𝑓 = 𝑜 → ◡ 𝑓 = ◡ 𝑜 ) |
109 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
110 |
109
|
a1i |
⊢ ( 𝑓 = 𝑜 → ℕ = ( ℕ0 ∖ { 0 } ) ) |
111 |
108 110
|
imaeq12d |
⊢ ( 𝑓 = 𝑜 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑜 “ ( ℕ0 ∖ { 0 } ) ) ) |
112 |
111
|
sseq1d |
⊢ ( 𝑓 = 𝑜 → ( ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 ↔ ( ◡ 𝑜 “ ( ℕ0 ∖ { 0 } ) ) ⊆ 𝐽 ) ) |
113 |
112
|
cbvrabv |
⊢ { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } = { 𝑜 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑜 “ ( ℕ0 ∖ { 0 } ) ) ⊆ 𝐽 } |
114 |
9 113
|
eqtri |
⊢ 𝑇 = { 𝑜 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑜 “ ( ℕ0 ∖ { 0 } ) ) ⊆ 𝐽 } |
115 |
|
eqid |
⊢ ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) = ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) |
116 |
114 115
|
resf1o |
⊢ ( ( ( ℕ ∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ ) ∧ 0 ∈ ℕ0 ) → ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1-onto→ ( ℕ0 ↑m 𝐽 ) ) |
117 |
107 63 116
|
mp2an |
⊢ ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1-onto→ ( ℕ0 ↑m 𝐽 ) |
118 |
|
f1of1 |
⊢ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1-onto→ ( ℕ0 ↑m 𝐽 ) → ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1→ ( ℕ0 ↑m 𝐽 ) ) |
119 |
117 118
|
ax-mp |
⊢ ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1→ ( ℕ0 ↑m 𝐽 ) |
120 |
|
inss1 |
⊢ ( 𝑇 ∩ 𝑅 ) ⊆ 𝑇 |
121 |
|
f1ores |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1→ ( ℕ0 ↑m 𝐽 ) ∧ ( 𝑇 ∩ 𝑅 ) ⊆ 𝑇 ) → ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ) |
122 |
119 120 121
|
mp2an |
⊢ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) |
123 |
|
vex |
⊢ 𝑜 ∈ V |
124 |
123
|
resex |
⊢ ( 𝑜 ↾ 𝐽 ) ∈ V |
125 |
124 115
|
fnmpti |
⊢ ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) Fn 𝑇 |
126 |
|
fvelimab |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) Fn 𝑇 ∧ ( 𝑇 ∩ 𝑅 ) ⊆ 𝑇 ) → ( 𝑓 ∈ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ) ) |
127 |
125 120 126
|
mp2an |
⊢ ( 𝑓 ∈ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ) |
128 |
|
eqid |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) = ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) |
129 |
|
vex |
⊢ 𝑚 ∈ V |
130 |
129
|
resex |
⊢ ( 𝑚 ↾ 𝐽 ) ∈ V |
131 |
128 130
|
elrnmpti |
⊢ ( 𝑓 ∈ ran ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑓 = ( 𝑚 ↾ 𝐽 ) ) |
132 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = ran ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) |
133 |
132
|
eleq2i |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↔ 𝑓 ∈ ran ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) ) |
134 |
|
elinel1 |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) → 𝑚 ∈ 𝑇 ) |
135 |
115
|
fvtresfn |
⊢ ( 𝑚 ∈ 𝑇 → ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = ( 𝑚 ↾ 𝐽 ) ) |
136 |
135
|
eqeq1d |
⊢ ( 𝑚 ∈ 𝑇 → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ ( 𝑚 ↾ 𝐽 ) = 𝑓 ) ) |
137 |
134 136
|
syl |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ ( 𝑚 ↾ 𝐽 ) = 𝑓 ) ) |
138 |
|
eqcom |
⊢ ( ( 𝑚 ↾ 𝐽 ) = 𝑓 ↔ 𝑓 = ( 𝑚 ↾ 𝐽 ) ) |
139 |
137 138
|
bitrdi |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ 𝑓 = ( 𝑚 ↾ 𝐽 ) ) ) |
140 |
139
|
rexbiia |
⊢ ( ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑓 = ( 𝑚 ↾ 𝐽 ) ) |
141 |
131 133 140
|
3bitr4ri |
⊢ ( ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
142 |
127 141
|
bitri |
⊢ ( 𝑓 ∈ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
143 |
142
|
eqriv |
⊢ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) = ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) |
144 |
|
f1oeq3 |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) = ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) ) |
145 |
143 144
|
ax-mp |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
146 |
|
resmpt |
⊢ ( ( 𝑇 ∩ 𝑅 ) ⊆ 𝑇 → ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) |
147 |
|
f1oeq1 |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) ) |
148 |
120 146 147
|
mp2b |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
149 |
145 148
|
bitri |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
150 |
122 149
|
mpbi |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) |
151 |
|
f1oco |
⊢ ( ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ∧ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) → ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) |
152 |
104 150 151
|
mp2an |
⊢ ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
153 |
|
f1of |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
154 |
|
eqid |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) |
155 |
154
|
fmpt |
⊢ ( ∀ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ( 𝑜 ↾ 𝐽 ) ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
156 |
155
|
biimpri |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → ∀ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ( 𝑜 ↾ 𝐽 ) ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
157 |
150 153 156
|
mp2b |
⊢ ∀ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ( 𝑜 ↾ 𝐽 ) ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) |
158 |
157
|
a1i |
⊢ ( ⊤ → ∀ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ( 𝑜 ↾ 𝐽 ) ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
159 |
|
eqidd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) |
160 |
|
eqidd |
⊢ ( ⊤ → ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ) |
161 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑜 ↾ 𝐽 ) → ( bits ∘ 𝑓 ) = ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) |
162 |
158 159 160 161
|
fmptcof |
⊢ ( ⊤ → ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
163 |
162
|
eqcomd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) = ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) ) |
164 |
|
eqidd |
⊢ ( ⊤ → ( 𝑇 ∩ 𝑅 ) = ( 𝑇 ∩ 𝑅 ) ) |
165 |
6
|
a1i |
⊢ ( ⊤ → 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) |
166 |
163 164 165
|
f1oeq123d |
⊢ ( ⊤ → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 ↔ ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) ) |
167 |
152 166
|
mpbiri |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 ) |
168 |
167
|
mptru |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 |
169 |
|
f1oco |
⊢ ( ( 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ∧ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 ) → ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
170 |
53 168 169
|
mp2an |
⊢ ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
171 |
|
eqidd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
172 |
|
bitsf |
⊢ bits : ℤ ⟶ 𝒫 ℕ0 |
173 |
|
zex |
⊢ ℤ ∈ V |
174 |
|
fex |
⊢ ( ( bits : ℤ ⟶ 𝒫 ℕ0 ∧ ℤ ∈ V ) → bits ∈ V ) |
175 |
172 173 174
|
mp2an |
⊢ bits ∈ V |
176 |
175 124
|
coex |
⊢ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ∈ V |
177 |
176
|
a1i |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ∈ V ) |
178 |
171 177
|
fvmpt2d |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ‘ 𝑜 ) = ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) |
179 |
|
f1of |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ 𝐻 ) |
180 |
167 179
|
syl |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ 𝐻 ) |
181 |
180
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ‘ 𝑜 ) ∈ 𝐻 ) |
182 |
178 181
|
eqeltrrd |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ∈ 𝐻 ) |
183 |
|
f1ofn |
⊢ ( 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) → 𝑀 Fn 𝐻 ) |
184 |
53 183
|
ax-mp |
⊢ 𝑀 Fn 𝐻 |
185 |
|
dffn5 |
⊢ ( 𝑀 Fn 𝐻 ↔ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ ( 𝑀 ‘ 𝑟 ) ) ) |
186 |
184 185
|
mpbi |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ ( 𝑀 ‘ 𝑟 ) ) |
187 |
186
|
a1i |
⊢ ( ⊤ → 𝑀 = ( 𝑟 ∈ 𝐻 ↦ ( 𝑀 ‘ 𝑟 ) ) ) |
188 |
|
fveq2 |
⊢ ( 𝑟 = ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) → ( 𝑀 ‘ 𝑟 ) = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
189 |
182 171 187 188
|
fmptco |
⊢ ( ⊤ → ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
190 |
189
|
mptru |
⊢ ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
191 |
|
f1oeq1 |
⊢ ( ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) → ( ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) ) |
192 |
190 191
|
ax-mp |
⊢ ( ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
193 |
170 192
|
mpbi |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
194 |
|
f1oco |
⊢ ( ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) : ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ∧ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) → ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) |
195 |
52 193 194
|
mp2an |
⊢ ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) |
196 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) |
197 |
|
fvex |
⊢ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ∈ V |
198 |
|
eqid |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
199 |
198
|
fvmpt2 |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ∈ V ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ‘ 𝑜 ) = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
200 |
196 197 199
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ‘ 𝑜 ) = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
201 |
|
f1of |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
202 |
193 201
|
mp1i |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
203 |
202
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ‘ 𝑜 ) ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
204 |
200 203
|
eqeltrrd |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
205 |
|
eqidd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
206 |
|
eqidd |
⊢ ( ⊤ → ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) = ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ) |
207 |
|
imaeq2 |
⊢ ( 𝑎 = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) → ( 𝐹 “ 𝑎 ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
208 |
204 205 206 207
|
fmptco |
⊢ ( ⊤ → ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
209 |
208
|
mptru |
⊢ ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
210 |
|
f1oeq1 |
⊢ ( ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) → ( ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) ) |
211 |
209 210
|
ax-mp |
⊢ ( ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) |
212 |
195 211
|
mpbi |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) |
213 |
|
f1oco |
⊢ ( ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) → ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
214 |
49 212 213
|
mp2an |
⊢ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |
215 |
5
|
mpoexg |
⊢ ( ( 𝐽 ∈ V ∧ ℕ0 ∈ V ) → 𝐹 ∈ V ) |
216 |
56 58 215
|
mp2an |
⊢ 𝐹 ∈ V |
217 |
|
imaexg |
⊢ ( 𝐹 ∈ V → ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ∈ V ) |
218 |
216 217
|
ax-mp |
⊢ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ∈ V |
219 |
|
eqid |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
220 |
219
|
fvmpt2 |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ∈ V ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ‘ 𝑜 ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
221 |
196 218 220
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ‘ 𝑜 ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
222 |
|
f1of |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( 𝒫 ℕ ∩ Fin ) ) |
223 |
212 222
|
mp1i |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( 𝒫 ℕ ∩ Fin ) ) |
224 |
223
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ‘ 𝑜 ) ∈ ( 𝒫 ℕ ∩ Fin ) ) |
225 |
221 224
|
eqeltrrd |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ∈ ( 𝒫 ℕ ∩ Fin ) ) |
226 |
|
eqidd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
227 |
|
indf1o |
⊢ ( ℕ ∈ V → ( 𝟭 ‘ ℕ ) : 𝒫 ℕ –1-1-onto→ ( { 0 , 1 } ↑m ℕ ) ) |
228 |
|
f1ofn |
⊢ ( ( 𝟭 ‘ ℕ ) : 𝒫 ℕ –1-1-onto→ ( { 0 , 1 } ↑m ℕ ) → ( 𝟭 ‘ ℕ ) Fn 𝒫 ℕ ) |
229 |
11 227 228
|
mp2b |
⊢ ( 𝟭 ‘ ℕ ) Fn 𝒫 ℕ |
230 |
|
dffn5 |
⊢ ( ( 𝟭 ‘ ℕ ) Fn 𝒫 ℕ ↔ ( 𝟭 ‘ ℕ ) = ( 𝑏 ∈ 𝒫 ℕ ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) ) |
231 |
229 230
|
mpbi |
⊢ ( 𝟭 ‘ ℕ ) = ( 𝑏 ∈ 𝒫 ℕ ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) |
232 |
231
|
reseq1i |
⊢ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) = ( ( 𝑏 ∈ 𝒫 ℕ ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) ↾ Fin ) |
233 |
|
resmpt3 |
⊢ ( ( 𝑏 ∈ 𝒫 ℕ ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) ↾ Fin ) = ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) |
234 |
232 233
|
eqtri |
⊢ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) = ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) |
235 |
234
|
a1i |
⊢ ( ⊤ → ( ( 𝟭 ‘ ℕ ) ↾ Fin ) = ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) ) |
236 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) → ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
237 |
225 226 235 236
|
fmptco |
⊢ ( ⊤ → ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) ) |
238 |
237
|
mptru |
⊢ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
239 |
10 238
|
eqtr4i |
⊢ 𝐺 = ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
240 |
|
f1oeq1 |
⊢ ( 𝐺 = ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → ( 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ↔ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) ) |
241 |
239 240
|
ax-mp |
⊢ ( 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ↔ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
242 |
214 241
|
mpbir |
⊢ 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |