Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
nnex |
⊢ ℕ ∈ V |
9 |
4 8
|
rabex2 |
⊢ 𝐽 ∈ V |
10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
11 |
|
eqid |
⊢ ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) = ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
12 |
9 10 11 6
|
fpwrelmapffs |
⊢ ( ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
13 |
|
ssrab2 |
⊢ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ⊆ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) |
14 |
10
|
pwex |
⊢ 𝒫 ℕ0 ∈ V |
15 |
|
inss1 |
⊢ ( 𝒫 ℕ0 ∩ Fin ) ⊆ 𝒫 ℕ0 |
16 |
|
mapss |
⊢ ( ( 𝒫 ℕ0 ∈ V ∧ ( 𝒫 ℕ0 ∩ Fin ) ⊆ 𝒫 ℕ0 ) → ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ⊆ ( 𝒫 ℕ0 ↑m 𝐽 ) ) |
17 |
14 15 16
|
mp2an |
⊢ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ⊆ ( 𝒫 ℕ0 ↑m 𝐽 ) |
18 |
13 17
|
sstri |
⊢ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ⊆ ( 𝒫 ℕ0 ↑m 𝐽 ) |
19 |
6 18
|
eqsstri |
⊢ 𝐻 ⊆ ( 𝒫 ℕ0 ↑m 𝐽 ) |
20 |
|
resmpt |
⊢ ( 𝐻 ⊆ ( 𝒫 ℕ0 ↑m 𝐽 ) → ( ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ↾ 𝐻 ) = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ) |
21 |
19 20
|
ax-mp |
⊢ ( ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ↾ 𝐻 ) = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
22 |
7 21
|
eqtr4i |
⊢ 𝑀 = ( ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ↾ 𝐻 ) |
23 |
|
f1oeq1 |
⊢ ( 𝑀 = ( ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ↾ 𝐻 ) → ( 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↔ ( ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) ) |
24 |
22 23
|
ax-mp |
⊢ ( 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↔ ( ( 𝑟 ∈ ( 𝒫 ℕ0 ↑m 𝐽 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
25 |
12 24
|
mpbir |
⊢ 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |