Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
fzfid |
⊢ ( ⊤ → ( 1 ... 𝑁 ) ∈ Fin ) |
9 |
|
fzfi |
⊢ ( 0 ... 𝑁 ) ∈ Fin |
10 |
|
snfi |
⊢ { 0 } ∈ Fin |
11 |
9 10
|
ifcli |
⊢ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin |
12 |
11
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℕ ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin ) |
13 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) → ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) |
14 |
13
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ) → ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) |
15 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( 1 ... 𝑁 ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = { 0 } ) |
16 |
|
eqimss |
⊢ ( if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = { 0 } → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ⊆ { 0 } ) |
17 |
14 15 16
|
3syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ⊆ { 0 } ) |
18 |
8 12 17
|
ixpfi2 |
⊢ ( ⊤ → X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin ) |
19 |
18
|
mptru |
⊢ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin |
20 |
1
|
eulerpartleme |
⊢ ( 𝑔 ∈ 𝑃 ↔ ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
21 |
|
ffn |
⊢ ( 𝑔 : ℕ ⟶ ℕ0 → 𝑔 Fn ℕ ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) → 𝑔 Fn ℕ ) |
23 |
|
ffvelrn |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℕ0 ) |
24 |
23
|
3ad2antl1 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℕ0 ) |
25 |
24
|
nn0red |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
26 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
28 |
25 27
|
remulcld |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ∈ ℝ ) |
29 |
|
cnvimass |
⊢ ( ◡ 𝑔 “ ℕ ) ⊆ dom 𝑔 |
30 |
|
fdm |
⊢ ( 𝑔 : ℕ ⟶ ℕ0 → dom 𝑔 = ℕ ) |
31 |
30
|
adantr |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → dom 𝑔 = ℕ ) |
32 |
29 31
|
sseqtrid |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( ◡ 𝑔 “ ℕ ) ⊆ ℕ ) |
33 |
32
|
sselda |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 𝑘 ∈ ℕ ) |
34 |
|
ffvelrn |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℕ0 ) |
35 |
34
|
adantlr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ℕ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℕ0 ) |
36 |
33 35
|
syldan |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( 𝑔 ‘ 𝑘 ) ∈ ℕ0 ) |
37 |
33
|
nnnn0d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 𝑘 ∈ ℕ0 ) |
38 |
36 37
|
nn0mulcld |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
39 |
38
|
nn0cnd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℂ ) |
40 |
|
simpl |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → 𝑔 : ℕ ⟶ ℕ0 ) |
41 |
|
nnex |
⊢ ℕ ∈ V |
42 |
|
frnnn0supp |
⊢ ( ( ℕ ∈ V ∧ 𝑔 : ℕ ⟶ ℕ0 ) → ( 𝑔 supp 0 ) = ( ◡ 𝑔 “ ℕ ) ) |
43 |
41 42
|
mpan |
⊢ ( 𝑔 : ℕ ⟶ ℕ0 → ( 𝑔 supp 0 ) = ( ◡ 𝑔 “ ℕ ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( 𝑔 supp 0 ) = ( ◡ 𝑔 “ ℕ ) ) |
45 |
|
eqimss |
⊢ ( ( 𝑔 supp 0 ) = ( ◡ 𝑔 “ ℕ ) → ( 𝑔 supp 0 ) ⊆ ( ◡ 𝑔 “ ℕ ) ) |
46 |
44 45
|
syl |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( 𝑔 supp 0 ) ⊆ ( ◡ 𝑔 “ ℕ ) ) |
47 |
41
|
a1i |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ℕ ∈ V ) |
48 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
49 |
48
|
a1i |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → 0 ∈ ℕ0 ) |
50 |
40 46 47 49
|
suppssr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( 𝑔 ‘ 𝑘 ) = 0 ) |
51 |
50
|
oveq1d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = ( 0 · 𝑘 ) ) |
52 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) → 𝑘 ∈ ℕ ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → 𝑘 ∈ ℕ ) |
54 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
55 |
|
mul02 |
⊢ ( 𝑘 ∈ ℂ → ( 0 · 𝑘 ) = 0 ) |
56 |
53 54 55
|
3syl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( 0 · 𝑘 ) = 0 ) |
57 |
51 56
|
eqtrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 0 ) |
58 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
59 |
58
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
60 |
59
|
a1i |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ℕ ⊆ ( ℤ≥ ‘ 1 ) ) |
61 |
32 39 57 60
|
sumss |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
62 |
|
simpr |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( ◡ 𝑔 “ ℕ ) ∈ Fin ) |
63 |
62 38
|
fsumnn0cl |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
64 |
61 63
|
eqeltrrd |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
65 |
|
eleq1 |
⊢ ( Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 → ( Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
66 |
64 65
|
syl5ibcom |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 → 𝑁 ∈ ℕ0 ) ) |
67 |
66
|
3impia |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) → 𝑁 ∈ ℕ0 ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
69 |
68
|
nn0red |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
70 |
24
|
nn0ge0d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 0 ≤ ( 𝑔 ‘ 𝑥 ) ) |
71 |
|
nnge1 |
⊢ ( 𝑥 ∈ ℕ → 1 ≤ 𝑥 ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 1 ≤ 𝑥 ) |
73 |
25 27 70 72
|
lemulge11d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) |
74 |
62
|
adantr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → ( ◡ 𝑔 “ ℕ ) ∈ Fin ) |
75 |
38
|
nn0red |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℝ ) |
76 |
75
|
adantlr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℝ ) |
77 |
38
|
nn0ge0d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 0 ≤ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
78 |
77
|
adantlr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 0 ≤ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
79 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑥 ) ) |
80 |
|
id |
⊢ ( 𝑘 = 𝑥 → 𝑘 = 𝑥 ) |
81 |
79 80
|
oveq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) |
82 |
|
simprr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) |
83 |
74 76 78 81 82
|
fsumge1 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
84 |
83
|
expr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) ) |
85 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ↔ ( 𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) |
86 |
57
|
ralrimiva |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ∀ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 0 ) |
87 |
81
|
eqeq1d |
⊢ ( 𝑘 = 𝑥 → ( ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 0 ↔ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) = 0 ) ) |
88 |
87
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 0 ∧ 𝑥 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) = 0 ) |
89 |
86 88
|
sylan |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) = 0 ) |
90 |
85 89
|
sylan2br |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) = 0 ) |
91 |
62
|
adantr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( ◡ 𝑔 “ ℕ ) ∈ Fin ) |
92 |
38
|
adantlr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
93 |
92
|
nn0red |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℝ ) |
94 |
92
|
nn0ge0d |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 0 ≤ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
95 |
91 93 94
|
fsumge0 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → 0 ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
96 |
95
|
adantrr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → 0 ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
97 |
90 96
|
eqbrtrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
98 |
97
|
expr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) ) |
99 |
84 98
|
pm2.61d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
100 |
61
|
adantr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
101 |
99 100
|
breqtrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
102 |
101
|
3adantl3 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
103 |
|
simpl3 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) |
104 |
102 103
|
breqtrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ 𝑁 ) |
105 |
25 28 69 73 104
|
letrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ≤ 𝑁 ) |
106 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
107 |
24 106
|
eleqtrdi |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 0 ) ) |
108 |
68
|
nn0zd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
109 |
|
elfz5 |
⊢ ( ( ( 𝑔 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ↔ ( 𝑔 ‘ 𝑥 ) ≤ 𝑁 ) ) |
110 |
107 108 109
|
syl2anc |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ↔ ( 𝑔 ‘ 𝑥 ) ≤ 𝑁 ) ) |
111 |
105 110
|
mpbird |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ) |
112 |
111
|
adantr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ) |
113 |
|
iftrue |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = ( 0 ... 𝑁 ) ) |
114 |
113
|
adantl |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = ( 0 ... 𝑁 ) ) |
115 |
112 114
|
eleqtrrd |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
116 |
|
nnge1 |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ → 1 ≤ ( 𝑔 ‘ 𝑥 ) ) |
117 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
118 |
117
|
adantl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ0 ) |
119 |
118
|
nn0ge0d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 0 ≤ 𝑥 ) |
120 |
|
lemulge12 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) ∧ ( 0 ≤ 𝑥 ∧ 1 ≤ ( 𝑔 ‘ 𝑥 ) ) ) → 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) |
121 |
120
|
expr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) ∧ 0 ≤ 𝑥 ) → ( 1 ≤ ( 𝑔 ‘ 𝑥 ) → 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) ) |
122 |
27 25 119 121
|
syl21anc |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 1 ≤ ( 𝑔 ‘ 𝑥 ) → 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) ) |
123 |
|
letr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ∧ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ 𝑁 ) → 𝑥 ≤ 𝑁 ) ) |
124 |
27 28 69 123
|
syl3anc |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ∧ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ 𝑁 ) → 𝑥 ≤ 𝑁 ) ) |
125 |
104 124
|
mpan2d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) → 𝑥 ≤ 𝑁 ) ) |
126 |
122 125
|
syld |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 1 ≤ ( 𝑔 ‘ 𝑥 ) → 𝑥 ≤ 𝑁 ) ) |
127 |
116 126
|
syl5 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ → 𝑥 ≤ 𝑁 ) ) |
128 |
|
simpr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ ) |
129 |
128 58
|
eleqtrdi |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
130 |
|
elfz5 |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↔ 𝑥 ≤ 𝑁 ) ) |
131 |
129 108 130
|
syl2anc |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↔ 𝑥 ≤ 𝑁 ) ) |
132 |
127 131
|
sylibrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ → 𝑥 ∈ ( 1 ... 𝑁 ) ) ) |
133 |
132
|
con3d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ¬ 𝑥 ∈ ( 1 ... 𝑁 ) → ¬ ( 𝑔 ‘ 𝑥 ) ∈ ℕ ) ) |
134 |
|
elnn0 |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ0 ↔ ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑔 ‘ 𝑥 ) = 0 ) ) |
135 |
24 134
|
sylib |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑔 ‘ 𝑥 ) = 0 ) ) |
136 |
135
|
ord |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ¬ ( 𝑔 ‘ 𝑥 ) ∈ ℕ → ( 𝑔 ‘ 𝑥 ) = 0 ) ) |
137 |
133 136
|
syld |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ¬ 𝑥 ∈ ( 1 ... 𝑁 ) → ( 𝑔 ‘ 𝑥 ) = 0 ) ) |
138 |
137
|
imp |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) = 0 ) |
139 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑥 ) ∈ V |
140 |
139
|
elsn |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝑔 ‘ 𝑥 ) = 0 ) |
141 |
138 140
|
sylibr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ { 0 } ) |
142 |
15
|
adantl |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = { 0 } ) |
143 |
141 142
|
eleqtrrd |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
144 |
115 143
|
pm2.61dan |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
145 |
144
|
ralrimiva |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) → ∀ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
146 |
|
vex |
⊢ 𝑔 ∈ V |
147 |
146
|
elixp |
⊢ ( 𝑔 ∈ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ↔ ( 𝑔 Fn ℕ ∧ ∀ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) ) |
148 |
22 145 147
|
sylanbrc |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) → 𝑔 ∈ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
149 |
20 148
|
sylbi |
⊢ ( 𝑔 ∈ 𝑃 → 𝑔 ∈ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
150 |
149
|
ssriv |
⊢ 𝑃 ⊆ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) |
151 |
|
ssfi |
⊢ ( ( X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin ∧ 𝑃 ⊆ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) → 𝑃 ∈ Fin ) |
152 |
19 150 151
|
mp2an |
⊢ 𝑃 ∈ Fin |