Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
nn0ex |
⊢ ℕ0 ∈ V |
3 |
|
nnex |
⊢ ℕ ∈ V |
4 |
2 3
|
elmap |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ↔ 𝐴 : ℕ ⟶ ℕ0 ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) ↔ ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) ) |
6 |
|
cnveq |
⊢ ( 𝑓 = 𝐴 → ◡ 𝑓 = ◡ 𝐴 ) |
7 |
6
|
imaeq1d |
⊢ ( 𝑓 = 𝐴 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝐴 “ ℕ ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑓 = 𝐴 → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
9 |
|
fveq1 |
⊢ ( 𝑓 = 𝐴 → ( 𝑓 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑓 = 𝐴 → ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
11 |
10
|
sumeq2sdv |
⊢ ( 𝑓 = 𝐴 → Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑓 = 𝐴 → ( Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ↔ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
13 |
8 12
|
anbi12d |
⊢ ( 𝑓 = 𝐴 → ( ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) ) |
14 |
13 1
|
elrab2 |
⊢ ( 𝐴 ∈ 𝑃 ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) ) |
15 |
|
3anass |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) ) |
16 |
5 14 15
|
3bitr4i |
⊢ ( 𝐴 ∈ 𝑃 ↔ ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |