Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
eldif |
⊢ ( 𝑡 ∈ ( ℕ ∖ 𝐽 ) ↔ ( 𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ 𝐽 ) ) |
11 |
|
breq2 |
⊢ ( 𝑧 = 𝑡 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑡 ) ) |
12 |
11
|
notbid |
⊢ ( 𝑧 = 𝑡 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑡 ) ) |
13 |
12 4
|
elrab2 |
⊢ ( 𝑡 ∈ 𝐽 ↔ ( 𝑡 ∈ ℕ ∧ ¬ 2 ∥ 𝑡 ) ) |
14 |
13
|
simplbi2 |
⊢ ( 𝑡 ∈ ℕ → ( ¬ 2 ∥ 𝑡 → 𝑡 ∈ 𝐽 ) ) |
15 |
14
|
con1d |
⊢ ( 𝑡 ∈ ℕ → ( ¬ 𝑡 ∈ 𝐽 → 2 ∥ 𝑡 ) ) |
16 |
15
|
imp |
⊢ ( ( 𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ 𝐽 ) → 2 ∥ 𝑡 ) |
17 |
10 16
|
sylbi |
⊢ ( 𝑡 ∈ ( ℕ ∖ 𝐽 ) → 2 ∥ 𝑡 ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → 2 ∥ 𝑡 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) → 2 ∥ 𝑡 ) |
20 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) → 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ) |
21 |
|
eldifi |
⊢ ( 𝑡 ∈ ( ℕ ∖ 𝐽 ) → 𝑡 ∈ ℕ ) |
22 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |
23 |
22
|
simp1bi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 ∈ ( ℕ0 ↑m ℕ ) ) |
24 |
|
elmapi |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) → 𝐴 : ℕ ⟶ ℕ0 ) |
25 |
23 24
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
26 |
|
ffn |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → 𝐴 Fn ℕ ) |
27 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ → ( 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) ) |
28 |
25 26 27
|
3syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) ) |
29 |
28
|
baibd |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) |
30 |
21 29
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) |
31 |
30
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) → 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) |
32 |
22
|
simp3bi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) |
33 |
32
|
sselda |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝑡 ∈ 𝐽 ) |
34 |
13
|
simprbi |
⊢ ( 𝑡 ∈ 𝐽 → ¬ 2 ∥ 𝑡 ) |
35 |
33 34
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ¬ 2 ∥ 𝑡 ) |
36 |
20 31 35
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) → ¬ 2 ∥ 𝑡 ) |
37 |
19 36
|
pm2.65da |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ¬ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) |
38 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → 𝐴 : ℕ ⟶ ℕ0 ) |
39 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → 𝑡 ∈ ℕ ) |
40 |
38 39
|
ffvelrnd |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ) |
41 |
|
elnn0 |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ↔ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
42 |
40 41
|
sylib |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
43 |
|
orel1 |
⊢ ( ¬ ( 𝐴 ‘ 𝑡 ) ∈ ℕ → ( ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑡 ) = 0 ) → ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
44 |
37 42 43
|
sylc |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |