Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
2 |
|
eulerpartlems.s |
⊢ 𝑆 = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → 2 ∈ ℝ ) |
5 |
|
bitsss |
⊢ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ⊆ ℕ0 |
6 |
|
simprr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
7 |
5 6
|
sselid |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → 𝑛 ∈ ℕ0 ) |
8 |
4 7
|
reexpcld |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
9 |
|
simprl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → 𝑡 ∈ ℕ ) |
10 |
9
|
nnred |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → 𝑡 ∈ ℝ ) |
11 |
8 10
|
remulcld |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( ( 2 ↑ 𝑛 ) · 𝑡 ) ∈ ℝ ) |
12 |
1 2
|
eulerpartlemelr |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝐴 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
13 |
12
|
simpld |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
14 |
13
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ) |
15 |
14
|
adantrr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ) |
16 |
15
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 𝐴 ‘ 𝑡 ) ∈ ℝ ) |
17 |
16 10
|
remulcld |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ∈ ℝ ) |
18 |
1 2
|
eulerpartlemsf |
⊢ 𝑆 : ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ⟶ ℕ0 |
19 |
18
|
ffvelrni |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 ) |
21 |
20
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
22 |
14
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( 𝐴 ‘ 𝑡 ) ∈ ℝ ) |
23 |
22
|
adantrr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 𝐴 ‘ 𝑡 ) ∈ ℝ ) |
24 |
9
|
nnrpd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → 𝑡 ∈ ℝ+ ) |
25 |
24
|
rprege0d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 𝑡 ∈ ℝ ∧ 0 ≤ 𝑡 ) ) |
26 |
|
bitsfi |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 → ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∈ Fin ) |
27 |
15 26
|
syl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∈ Fin ) |
28 |
3
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → 2 ∈ ℝ ) |
29 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ⊆ ℕ0 ) |
30 |
29
|
sselda |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → 𝑖 ∈ ℕ0 ) |
31 |
28 30
|
reexpcld |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → ( 2 ↑ 𝑖 ) ∈ ℝ ) |
32 |
|
0le2 |
⊢ 0 ≤ 2 |
33 |
32
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → 0 ≤ 2 ) |
34 |
28 30 33
|
expge0d |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑖 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → 0 ≤ ( 2 ↑ 𝑖 ) ) |
35 |
6
|
snssd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → { 𝑛 } ⊆ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
36 |
27 31 34 35
|
fsumless |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → Σ 𝑖 ∈ { 𝑛 } ( 2 ↑ 𝑖 ) ≤ Σ 𝑖 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( 2 ↑ 𝑖 ) ) |
37 |
8
|
recnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
38 |
|
oveq2 |
⊢ ( 𝑖 = 𝑛 → ( 2 ↑ 𝑖 ) = ( 2 ↑ 𝑛 ) ) |
39 |
38
|
sumsn |
⊢ ( ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ ( 2 ↑ 𝑛 ) ∈ ℂ ) → Σ 𝑖 ∈ { 𝑛 } ( 2 ↑ 𝑖 ) = ( 2 ↑ 𝑛 ) ) |
40 |
6 37 39
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → Σ 𝑖 ∈ { 𝑛 } ( 2 ↑ 𝑖 ) = ( 2 ↑ 𝑛 ) ) |
41 |
|
bitsinv1 |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 → Σ 𝑖 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( 2 ↑ 𝑖 ) = ( 𝐴 ‘ 𝑡 ) ) |
42 |
15 41
|
syl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → Σ 𝑖 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( 2 ↑ 𝑖 ) = ( 𝐴 ‘ 𝑡 ) ) |
43 |
36 40 42
|
3brtr3d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 2 ↑ 𝑛 ) ≤ ( 𝐴 ‘ 𝑡 ) ) |
44 |
|
lemul1a |
⊢ ( ( ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℝ ∧ ( 𝑡 ∈ ℝ ∧ 0 ≤ 𝑡 ) ) ∧ ( 2 ↑ 𝑛 ) ≤ ( 𝐴 ‘ 𝑡 ) ) → ( ( 2 ↑ 𝑛 ) · 𝑡 ) ≤ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
45 |
8 23 25 43 44
|
syl31anc |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( ( 2 ↑ 𝑛 ) · 𝑡 ) ≤ ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
46 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ∈ Fin ) |
47 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) → 𝑘 ∈ ℕ ) |
48 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ) |
49 |
13 47 48
|
syl2an |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℕ0 ) |
50 |
49
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
51 |
47
|
adantl |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 𝑘 ∈ ℕ ) |
52 |
51
|
nnred |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 𝑘 ∈ ℝ ) |
53 |
50 52
|
remulcld |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ ℝ ) |
54 |
53
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ∈ ℝ ) |
55 |
49
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 0 ≤ ( 𝐴 ‘ 𝑘 ) ) |
56 |
|
0red |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 0 ∈ ℝ ) |
57 |
51
|
nngt0d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 0 < 𝑘 ) |
58 |
56 52 57
|
ltled |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 0 ≤ 𝑘 ) |
59 |
50 52 55 58
|
mulge0d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 0 ≤ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
60 |
59
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 0 ≤ ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
61 |
|
fveq2 |
⊢ ( 𝑘 = 𝑡 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑡 ) ) |
62 |
|
id |
⊢ ( 𝑘 = 𝑡 → 𝑘 = 𝑡 ) |
63 |
61 62
|
oveq12d |
⊢ ( 𝑘 = 𝑡 → ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) = ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ) |
64 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) |
65 |
46 54 60 63 64
|
fsumge1 |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
66 |
65
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
67 |
|
eldif |
⊢ ( 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ↔ ( 𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) |
68 |
|
nndiffz1 |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 → ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) = ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) |
69 |
68
|
eleq2d |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℕ0 → ( 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ↔ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) ) |
70 |
19 69
|
syl |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ↔ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) ) |
71 |
70
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) ↔ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) ) |
72 |
1 2
|
eulerpartlems |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℤ≥ ‘ ( ( 𝑆 ‘ 𝐴 ) + 1 ) ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
73 |
71 72
|
sylbi |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
74 |
73
|
oveq1d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = ( 0 · 𝑡 ) ) |
75 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) |
76 |
75
|
eldifad |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝑡 ∈ ℕ ) |
77 |
76
|
nncnd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 𝑡 ∈ ℂ ) |
78 |
77
|
mul02d |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( 0 · 𝑡 ) = 0 ) |
79 |
74 78
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) = 0 ) |
80 |
|
fzfid |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ∈ Fin ) |
81 |
80 53 59
|
fsumge0 |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → 0 ≤ Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
82 |
81
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → 0 ≤ Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
83 |
79 82
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
84 |
67 83
|
sylan2br |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
85 |
84
|
anassrs |
⊢ ( ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
86 |
66 85
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
87 |
1 2
|
eulerpartlemsv3 |
⊢ ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝐴 ) = Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( 𝑆 ‘ 𝐴 ) = Σ 𝑘 ∈ ( 1 ... ( 𝑆 ‘ 𝐴 ) ) ( ( 𝐴 ‘ 𝑘 ) · 𝑘 ) ) |
89 |
86 88
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ ( 𝑆 ‘ 𝐴 ) ) |
90 |
89
|
adantrr |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( ( 𝐴 ‘ 𝑡 ) · 𝑡 ) ≤ ( 𝑆 ‘ 𝐴 ) ) |
91 |
11 17 21 45 90
|
letrd |
⊢ ( ( 𝐴 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( ( 2 ↑ 𝑛 ) · 𝑡 ) ≤ ( 𝑆 ‘ 𝐴 ) ) |