Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
11 |
|
eulerpartlemgh.1 |
⊢ 𝑈 = ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
12 |
4 5
|
oddpwdc |
⊢ 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ |
13 |
|
f1of1 |
⊢ ( 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ → 𝐹 : ( 𝐽 × ℕ0 ) –1-1→ ℕ ) |
14 |
12 13
|
ax-mp |
⊢ 𝐹 : ( 𝐽 × ℕ0 ) –1-1→ ℕ |
15 |
|
iunss |
⊢ ( ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ↔ ∀ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ) |
16 |
|
inss2 |
⊢ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ⊆ 𝐽 |
17 |
16
|
sseli |
⊢ ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) → 𝑡 ∈ 𝐽 ) |
18 |
17
|
snssd |
⊢ ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) → { 𝑡 } ⊆ 𝐽 ) |
19 |
|
bitsss |
⊢ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ⊆ ℕ0 |
20 |
|
xpss12 |
⊢ ( ( { 𝑡 } ⊆ 𝐽 ∧ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ⊆ ℕ0 ) → ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) → ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ) |
22 |
15 21
|
mprgbir |
⊢ ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ⊆ ( 𝐽 × ℕ0 ) |
23 |
11 22
|
eqsstri |
⊢ 𝑈 ⊆ ( 𝐽 × ℕ0 ) |
24 |
|
f1ores |
⊢ ( ( 𝐹 : ( 𝐽 × ℕ0 ) –1-1→ ℕ ∧ 𝑈 ⊆ ( 𝐽 × ℕ0 ) ) → ( 𝐹 ↾ 𝑈 ) : 𝑈 –1-1-onto→ ( 𝐹 “ 𝑈 ) ) |
25 |
14 23 24
|
mp2an |
⊢ ( 𝐹 ↾ 𝑈 ) : 𝑈 –1-1-onto→ ( 𝐹 “ 𝑈 ) |
26 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ∧ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) → ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) |
27 |
|
2nn |
⊢ 2 ∈ ℕ |
28 |
27
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → 2 ∈ ℕ ) |
29 |
19
|
sseli |
⊢ ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) → 𝑛 ∈ ℕ0 ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → 𝑛 ∈ ℕ0 ) |
31 |
28 30
|
nnexpcld |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
32 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → 𝑡 ∈ ℕ ) |
33 |
31 32
|
nnmulcld |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → ( ( 2 ↑ 𝑛 ) · 𝑡 ) ∈ ℕ ) |
34 |
33
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ∧ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) → ( ( 2 ↑ 𝑛 ) · 𝑡 ) ∈ ℕ ) |
35 |
26 34
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ∧ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) → 𝑝 ∈ ℕ ) |
36 |
35
|
rexlimdva2 |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 → 𝑝 ∈ ℕ ) ) |
37 |
36
|
rexlimdva |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 → 𝑝 ∈ ℕ ) ) |
38 |
37
|
pm4.71rd |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ↔ ( 𝑝 ∈ ℕ ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) ) |
39 |
|
rex0 |
⊢ ¬ ∃ 𝑛 ∈ ∅ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 |
40 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝑡 ∈ ℕ ) |
41 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) |
42 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |
43 |
42
|
simp1bi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 ∈ ( ℕ0 ↑m ℕ ) ) |
44 |
|
elmapi |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) → 𝐴 : ℕ ⟶ ℕ0 ) |
45 |
43 44
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝐴 : ℕ ⟶ ℕ0 ) |
47 |
|
ffn |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → 𝐴 Fn ℕ ) |
48 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ → ( 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) ) |
49 |
46 47 48
|
3syl |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) ) |
50 |
41 49
|
mtbid |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ¬ ( 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) |
51 |
|
imnan |
⊢ ( ( 𝑡 ∈ ℕ → ¬ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ↔ ¬ ( 𝑡 ∈ ℕ ∧ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) |
52 |
50 51
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( 𝑡 ∈ ℕ → ¬ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) ) |
53 |
40 52
|
mpd |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ¬ ( 𝐴 ‘ 𝑡 ) ∈ ℕ ) |
54 |
46 40
|
ffvelrnd |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ) |
55 |
|
elnn0 |
⊢ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ0 ↔ ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
56 |
54 55
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
57 |
|
orel1 |
⊢ ( ¬ ( 𝐴 ‘ 𝑡 ) ∈ ℕ → ( ( ( 𝐴 ‘ 𝑡 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑡 ) = 0 ) → ( 𝐴 ‘ 𝑡 ) = 0 ) ) |
58 |
53 56 57
|
sylc |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
59 |
58
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) = ( bits ‘ 0 ) ) |
60 |
|
0bits |
⊢ ( bits ‘ 0 ) = ∅ |
61 |
59 60
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) = ∅ ) |
62 |
61
|
rexeqdv |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ↔ ∃ 𝑛 ∈ ∅ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
63 |
39 62
|
mtbiri |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) → ¬ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) |
64 |
63
|
ex |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( ¬ 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) → ¬ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
65 |
64
|
con4d |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 → 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) ) |
66 |
65
|
impr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) → 𝑡 ∈ ( ◡ 𝐴 “ ℕ ) ) |
67 |
|
eldif |
⊢ ( 𝑡 ∈ ( ℕ ∖ 𝐽 ) ↔ ( 𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ 𝐽 ) ) |
68 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemf |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
69 |
67 68
|
sylan2br |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ 𝐽 ) ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
70 |
69
|
anassrs |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ 𝐽 ) → ( 𝐴 ‘ 𝑡 ) = 0 ) |
71 |
70
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ 𝐽 ) → ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) = ( bits ‘ 0 ) ) |
72 |
71 60
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ 𝐽 ) → ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) = ∅ ) |
73 |
72
|
rexeqdv |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ 𝐽 ) → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ↔ ∃ 𝑛 ∈ ∅ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
74 |
39 73
|
mtbiri |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) ∧ ¬ 𝑡 ∈ 𝐽 ) → ¬ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) |
75 |
74
|
ex |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( ¬ 𝑡 ∈ 𝐽 → ¬ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
76 |
75
|
con4d |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 → 𝑡 ∈ 𝐽 ) ) |
77 |
76
|
impr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) → 𝑡 ∈ 𝐽 ) |
78 |
66 77
|
elind |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) → 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ) |
79 |
|
simprr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) → ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) |
80 |
78 79
|
jca |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑡 ∈ ℕ ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) → ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
81 |
80
|
ex |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( 𝑡 ∈ ℕ ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) → ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) ) |
82 |
81
|
reximdv2 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 → ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
83 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ |
84 |
4 83
|
eqsstri |
⊢ 𝐽 ⊆ ℕ |
85 |
16 84
|
sstri |
⊢ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ⊆ ℕ |
86 |
|
ssrexv |
⊢ ( ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ⊆ ℕ → ( ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 → ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
87 |
85 86
|
mp1i |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 → ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
88 |
82 87
|
impbid |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ↔ ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
89 |
38 88
|
bitr3d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( 𝑝 ∈ ℕ ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ↔ ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
90 |
|
eqeq2 |
⊢ ( 𝑚 = 𝑝 → ( ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 ↔ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
91 |
90
|
2rexbidv |
⊢ ( 𝑚 = 𝑝 → ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 ↔ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
92 |
91
|
elrab |
⊢ ( 𝑝 ∈ { 𝑚 ∈ ℕ ∣ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 } ↔ ( 𝑝 ∈ ℕ ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
93 |
92
|
a1i |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑝 ∈ { 𝑚 ∈ ℕ ∣ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 } ↔ ( 𝑝 ∈ ℕ ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) ) |
94 |
11
|
imaeq2i |
⊢ ( 𝐹 “ 𝑈 ) = ( 𝐹 “ ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) |
95 |
|
imaiun |
⊢ ( 𝐹 “ ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) = ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) |
96 |
94 95
|
eqtri |
⊢ ( 𝐹 “ 𝑈 ) = ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) |
97 |
96
|
eleq2i |
⊢ ( 𝑝 ∈ ( 𝐹 “ 𝑈 ) ↔ 𝑝 ∈ ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ) |
98 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) 𝑝 ∈ ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ) |
99 |
|
f1ofn |
⊢ ( 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ → 𝐹 Fn ( 𝐽 × ℕ0 ) ) |
100 |
12 99
|
ax-mp |
⊢ 𝐹 Fn ( 𝐽 × ℕ0 ) |
101 |
|
snssi |
⊢ ( 𝑡 ∈ 𝐽 → { 𝑡 } ⊆ 𝐽 ) |
102 |
101 19 20
|
sylancl |
⊢ ( 𝑡 ∈ 𝐽 → ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ) |
103 |
|
ovelimab |
⊢ ( ( 𝐹 Fn ( 𝐽 × ℕ0 ) ∧ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ) → ( 𝑝 ∈ ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑥 ∈ { 𝑡 } ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑝 = ( 𝑥 𝐹 𝑛 ) ) ) |
104 |
100 102 103
|
sylancr |
⊢ ( 𝑡 ∈ 𝐽 → ( 𝑝 ∈ ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑥 ∈ { 𝑡 } ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑝 = ( 𝑥 𝐹 𝑛 ) ) ) |
105 |
|
vex |
⊢ 𝑡 ∈ V |
106 |
|
oveq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 𝐹 𝑛 ) = ( 𝑡 𝐹 𝑛 ) ) |
107 |
106
|
eqeq2d |
⊢ ( 𝑥 = 𝑡 → ( 𝑝 = ( 𝑥 𝐹 𝑛 ) ↔ 𝑝 = ( 𝑡 𝐹 𝑛 ) ) ) |
108 |
107
|
rexbidv |
⊢ ( 𝑥 = 𝑡 → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑝 = ( 𝑥 𝐹 𝑛 ) ↔ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑝 = ( 𝑡 𝐹 𝑛 ) ) ) |
109 |
105 108
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { 𝑡 } ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑝 = ( 𝑥 𝐹 𝑛 ) ↔ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑝 = ( 𝑡 𝐹 𝑛 ) ) |
110 |
104 109
|
bitrdi |
⊢ ( 𝑡 ∈ 𝐽 → ( 𝑝 ∈ ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑝 = ( 𝑡 𝐹 𝑛 ) ) ) |
111 |
|
df-ov |
⊢ ( 𝑡 𝐹 𝑛 ) = ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) |
112 |
111
|
eqeq1i |
⊢ ( ( 𝑡 𝐹 𝑛 ) = 𝑝 ↔ ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = 𝑝 ) |
113 |
|
eqcom |
⊢ ( ( 𝑡 𝐹 𝑛 ) = 𝑝 ↔ 𝑝 = ( 𝑡 𝐹 𝑛 ) ) |
114 |
112 113
|
bitr3i |
⊢ ( ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = 𝑝 ↔ 𝑝 = ( 𝑡 𝐹 𝑛 ) ) |
115 |
|
opelxpi |
⊢ ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0 ) → 〈 𝑡 , 𝑛 〉 ∈ ( 𝐽 × ℕ0 ) ) |
116 |
4 5
|
oddpwdcv |
⊢ ( 〈 𝑡 , 𝑛 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ ( 2nd ‘ 〈 𝑡 , 𝑛 〉 ) ) · ( 1st ‘ 〈 𝑡 , 𝑛 〉 ) ) ) |
117 |
|
vex |
⊢ 𝑛 ∈ V |
118 |
105 117
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑡 , 𝑛 〉 ) = 𝑛 |
119 |
118
|
oveq2i |
⊢ ( 2 ↑ ( 2nd ‘ 〈 𝑡 , 𝑛 〉 ) ) = ( 2 ↑ 𝑛 ) |
120 |
105 117
|
op1st |
⊢ ( 1st ‘ 〈 𝑡 , 𝑛 〉 ) = 𝑡 |
121 |
119 120
|
oveq12i |
⊢ ( ( 2 ↑ ( 2nd ‘ 〈 𝑡 , 𝑛 〉 ) ) · ( 1st ‘ 〈 𝑡 , 𝑛 〉 ) ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) |
122 |
116 121
|
eqtrdi |
⊢ ( 〈 𝑡 , 𝑛 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) ) |
123 |
115 122
|
syl |
⊢ ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) ) |
124 |
123
|
eqeq1d |
⊢ ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = 𝑝 ↔ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
125 |
114 124
|
bitr3id |
⊢ ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑝 = ( 𝑡 𝐹 𝑛 ) ↔ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
126 |
29 125
|
sylan2 |
⊢ ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → ( 𝑝 = ( 𝑡 𝐹 𝑛 ) ↔ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
127 |
126
|
rexbidva |
⊢ ( 𝑡 ∈ 𝐽 → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑝 = ( 𝑡 𝐹 𝑛 ) ↔ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
128 |
110 127
|
bitrd |
⊢ ( 𝑡 ∈ 𝐽 → ( 𝑝 ∈ ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
129 |
17 128
|
syl |
⊢ ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) → ( 𝑝 ∈ ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
130 |
129
|
rexbiia |
⊢ ( ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) 𝑝 ∈ ( 𝐹 “ ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) |
131 |
97 98 130
|
3bitri |
⊢ ( 𝑝 ∈ ( 𝐹 “ 𝑈 ) ↔ ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) |
132 |
131
|
a1i |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑝 ∈ ( 𝐹 “ 𝑈 ) ↔ ∃ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑝 ) ) |
133 |
89 93 132
|
3bitr4rd |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑝 ∈ ( 𝐹 “ 𝑈 ) ↔ 𝑝 ∈ { 𝑚 ∈ ℕ ∣ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 } ) ) |
134 |
133
|
eqrdv |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐹 “ 𝑈 ) = { 𝑚 ∈ ℕ ∣ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 } ) |
135 |
|
f1oeq3 |
⊢ ( ( 𝐹 “ 𝑈 ) = { 𝑚 ∈ ℕ ∣ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 } → ( ( 𝐹 ↾ 𝑈 ) : 𝑈 –1-1-onto→ ( 𝐹 “ 𝑈 ) ↔ ( 𝐹 ↾ 𝑈 ) : 𝑈 –1-1-onto→ { 𝑚 ∈ ℕ ∣ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 } ) ) |
136 |
134 135
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( 𝐹 ↾ 𝑈 ) : 𝑈 –1-1-onto→ ( 𝐹 “ 𝑈 ) ↔ ( 𝐹 ↾ 𝑈 ) : 𝑈 –1-1-onto→ { 𝑚 ∈ ℕ ∣ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 } ) ) |
137 |
25 136
|
mpbii |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐹 ↾ 𝑈 ) : 𝑈 –1-1-onto→ { 𝑚 ∈ ℕ ∣ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝑚 } ) |