Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
11 |
|
eulerpartlemgh.1 |
⊢ 𝑈 = ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
12 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |
13 |
12
|
simp1bi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 ∈ ( ℕ0 ↑m ℕ ) ) |
14 |
|
elmapi |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) → 𝐴 : ℕ ⟶ ℕ0 ) |
15 |
13 14
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ) → 𝐴 : ℕ ⟶ ℕ0 ) |
17 |
16
|
ffund |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ) → Fun 𝐴 ) |
18 |
|
inss1 |
⊢ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ⊆ ( ◡ 𝐴 “ ℕ ) |
19 |
|
cnvimass |
⊢ ( ◡ 𝐴 “ ℕ ) ⊆ dom 𝐴 |
20 |
19 15
|
fssdm |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ 𝐴 “ ℕ ) ⊆ ℕ ) |
21 |
18 20
|
sstrid |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ⊆ ℕ ) |
22 |
21
|
sselda |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ) → 𝑡 ∈ ℕ ) |
23 |
15
|
fdmd |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → dom 𝐴 = ℕ ) |
24 |
23
|
eleq2d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑡 ∈ dom 𝐴 ↔ 𝑡 ∈ ℕ ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ) → ( 𝑡 ∈ dom 𝐴 ↔ 𝑡 ∈ ℕ ) ) |
26 |
22 25
|
mpbird |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ) → 𝑡 ∈ dom 𝐴 ) |
27 |
|
fvco |
⊢ ( ( Fun 𝐴 ∧ 𝑡 ∈ dom 𝐴 ) → ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) = ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
28 |
17 26 27
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ) → ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) = ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
29 |
28
|
xpeq2d |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ) → ( { 𝑡 } × ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) ) = ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) |
30 |
29
|
iuneq2dv |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) ) = ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) |
31 |
|
eqid |
⊢ ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) ) = ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) ) |
32 |
31
|
marypha2lem2 |
⊢ ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) ) = { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∧ 𝑛 ∈ ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) ) } |
33 |
30 32
|
eqtr3di |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ∪ 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ( { 𝑡 } × ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) = { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∧ 𝑛 ∈ ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) ) } ) |
34 |
11 33
|
syl5eq |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝑈 = { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ ( ( ◡ 𝐴 “ ℕ ) ∩ 𝐽 ) ∧ 𝑛 ∈ ( ( bits ∘ 𝐴 ) ‘ 𝑡 ) ) } ) |