Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
11 |
|
bitsf1o |
⊢ ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) |
12 |
|
f1of |
⊢ ( ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) → ( bits ↾ ℕ0 ) : ℕ0 ⟶ ( 𝒫 ℕ0 ∩ Fin ) ) |
13 |
11 12
|
ax-mp |
⊢ ( bits ↾ ℕ0 ) : ℕ0 ⟶ ( 𝒫 ℕ0 ∩ Fin ) |
14 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |
15 |
14
|
biimpi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |
16 |
15
|
simp1d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 ∈ ( ℕ0 ↑m ℕ ) ) |
17 |
|
nn0ex |
⊢ ℕ0 ∈ V |
18 |
|
nnex |
⊢ ℕ ∈ V |
19 |
17 18
|
elmap |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ↔ 𝐴 : ℕ ⟶ ℕ0 ) |
20 |
16 19
|
sylib |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
21 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ |
22 |
4 21
|
eqsstri |
⊢ 𝐽 ⊆ ℕ |
23 |
|
fssres |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝐽 ⊆ ℕ ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
24 |
20 22 23
|
sylancl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
25 |
|
fco2 |
⊢ ( ( ( bits ↾ ℕ0 ) : ℕ0 ⟶ ( 𝒫 ℕ0 ∩ Fin ) ∧ ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) → ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) : 𝐽 ⟶ ( 𝒫 ℕ0 ∩ Fin ) ) |
26 |
13 24 25
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) : 𝐽 ⟶ ( 𝒫 ℕ0 ∩ Fin ) ) |
27 |
17
|
pwex |
⊢ 𝒫 ℕ0 ∈ V |
28 |
27
|
inex1 |
⊢ ( 𝒫 ℕ0 ∩ Fin ) ∈ V |
29 |
18 22
|
ssexi |
⊢ 𝐽 ∈ V |
30 |
28 29
|
elmap |
⊢ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ↔ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) : 𝐽 ⟶ ( 𝒫 ℕ0 ∩ Fin ) ) |
31 |
26 30
|
sylibr |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ) |
32 |
15
|
simp2d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ 𝐴 “ ℕ ) ∈ Fin ) |
33 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
34 |
|
suppimacnv |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
35 |
33 34
|
mpan2 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
36 |
|
frnsuppeq |
⊢ ( ( ℕ ∈ V ∧ 0 ∈ ℕ0 ) → ( 𝐴 : ℕ ⟶ ℕ0 → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ( ℕ0 ∖ { 0 } ) ) ) ) |
37 |
18 33 36
|
mp2an |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ( ℕ0 ∖ { 0 } ) ) ) |
38 |
20 37
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ( ℕ0 ∖ { 0 } ) ) ) |
39 |
35 38
|
eqtr3d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) = ( ◡ 𝐴 “ ( ℕ0 ∖ { 0 } ) ) ) |
40 |
39
|
eleq1d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ∈ Fin ↔ ( ◡ 𝐴 “ ( ℕ0 ∖ { 0 } ) ) ∈ Fin ) ) |
41 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
42 |
41
|
imaeq2i |
⊢ ( ◡ 𝐴 “ ℕ ) = ( ◡ 𝐴 “ ( ℕ0 ∖ { 0 } ) ) |
43 |
42
|
eleq1i |
⊢ ( ( ◡ 𝐴 “ ℕ ) ∈ Fin ↔ ( ◡ 𝐴 “ ( ℕ0 ∖ { 0 } ) ) ∈ Fin ) |
44 |
40 43
|
bitr4di |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ∈ Fin ↔ ( ◡ 𝐴 “ ℕ ) ∈ Fin ) ) |
45 |
32 44
|
mpbird |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ∈ Fin ) |
46 |
|
resss |
⊢ ( 𝐴 ↾ 𝐽 ) ⊆ 𝐴 |
47 |
|
cnvss |
⊢ ( ( 𝐴 ↾ 𝐽 ) ⊆ 𝐴 → ◡ ( 𝐴 ↾ 𝐽 ) ⊆ ◡ 𝐴 ) |
48 |
|
imass1 |
⊢ ( ◡ ( 𝐴 ↾ 𝐽 ) ⊆ ◡ 𝐴 → ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
49 |
46 47 48
|
mp2b |
⊢ ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) |
50 |
|
ssfi |
⊢ ( ( ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ∈ Fin ∧ ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) → ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ∈ Fin ) |
51 |
45 49 50
|
sylancl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ∈ Fin ) |
52 |
|
cnvco |
⊢ ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) = ( ◡ ( 𝐴 ↾ 𝐽 ) ∘ ◡ bits ) |
53 |
52
|
imaeq1i |
⊢ ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) = ( ( ◡ ( 𝐴 ↾ 𝐽 ) ∘ ◡ bits ) “ ( V ∖ { ∅ } ) ) |
54 |
|
imaco |
⊢ ( ( ◡ ( 𝐴 ↾ 𝐽 ) ∘ ◡ bits ) “ ( V ∖ { ∅ } ) ) = ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( ◡ bits “ ( V ∖ { ∅ } ) ) ) |
55 |
53 54
|
eqtri |
⊢ ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) = ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( ◡ bits “ ( V ∖ { ∅ } ) ) ) |
56 |
|
ffun |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → Fun 𝐴 ) |
57 |
|
funres |
⊢ ( Fun 𝐴 → Fun ( 𝐴 ↾ 𝐽 ) ) |
58 |
20 56 57
|
3syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → Fun ( 𝐴 ↾ 𝐽 ) ) |
59 |
|
ssv |
⊢ ( ◡ bits “ V ) ⊆ V |
60 |
|
ssdif |
⊢ ( ( ◡ bits “ V ) ⊆ V → ( ( ◡ bits “ V ) ∖ ( ◡ bits “ { ∅ } ) ) ⊆ ( V ∖ ( ◡ bits “ { ∅ } ) ) ) |
61 |
59 60
|
ax-mp |
⊢ ( ( ◡ bits “ V ) ∖ ( ◡ bits “ { ∅ } ) ) ⊆ ( V ∖ ( ◡ bits “ { ∅ } ) ) |
62 |
|
bitsf |
⊢ bits : ℤ ⟶ 𝒫 ℕ0 |
63 |
|
ffun |
⊢ ( bits : ℤ ⟶ 𝒫 ℕ0 → Fun bits ) |
64 |
|
difpreima |
⊢ ( Fun bits → ( ◡ bits “ ( V ∖ { ∅ } ) ) = ( ( ◡ bits “ V ) ∖ ( ◡ bits “ { ∅ } ) ) ) |
65 |
62 63 64
|
mp2b |
⊢ ( ◡ bits “ ( V ∖ { ∅ } ) ) = ( ( ◡ bits “ V ) ∖ ( ◡ bits “ { ∅ } ) ) |
66 |
|
bitsf1 |
⊢ bits : ℤ –1-1→ 𝒫 ℕ0 |
67 |
|
0z |
⊢ 0 ∈ ℤ |
68 |
|
snssi |
⊢ ( 0 ∈ ℤ → { 0 } ⊆ ℤ ) |
69 |
67 68
|
ax-mp |
⊢ { 0 } ⊆ ℤ |
70 |
|
f1imacnv |
⊢ ( ( bits : ℤ –1-1→ 𝒫 ℕ0 ∧ { 0 } ⊆ ℤ ) → ( ◡ bits “ ( bits “ { 0 } ) ) = { 0 } ) |
71 |
66 69 70
|
mp2an |
⊢ ( ◡ bits “ ( bits “ { 0 } ) ) = { 0 } |
72 |
|
ffn |
⊢ ( bits : ℤ ⟶ 𝒫 ℕ0 → bits Fn ℤ ) |
73 |
62 72
|
ax-mp |
⊢ bits Fn ℤ |
74 |
|
fnsnfv |
⊢ ( ( bits Fn ℤ ∧ 0 ∈ ℤ ) → { ( bits ‘ 0 ) } = ( bits “ { 0 } ) ) |
75 |
73 67 74
|
mp2an |
⊢ { ( bits ‘ 0 ) } = ( bits “ { 0 } ) |
76 |
|
0bits |
⊢ ( bits ‘ 0 ) = ∅ |
77 |
76
|
sneqi |
⊢ { ( bits ‘ 0 ) } = { ∅ } |
78 |
75 77
|
eqtr3i |
⊢ ( bits “ { 0 } ) = { ∅ } |
79 |
78
|
imaeq2i |
⊢ ( ◡ bits “ ( bits “ { 0 } ) ) = ( ◡ bits “ { ∅ } ) |
80 |
71 79
|
eqtr3i |
⊢ { 0 } = ( ◡ bits “ { ∅ } ) |
81 |
80
|
difeq2i |
⊢ ( V ∖ { 0 } ) = ( V ∖ ( ◡ bits “ { ∅ } ) ) |
82 |
61 65 81
|
3sstr4i |
⊢ ( ◡ bits “ ( V ∖ { ∅ } ) ) ⊆ ( V ∖ { 0 } ) |
83 |
|
sspreima |
⊢ ( ( Fun ( 𝐴 ↾ 𝐽 ) ∧ ( ◡ bits “ ( V ∖ { ∅ } ) ) ⊆ ( V ∖ { 0 } ) ) → ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( ◡ bits “ ( V ∖ { ∅ } ) ) ) ⊆ ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ) |
84 |
58 82 83
|
sylancl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( ◡ bits “ ( V ∖ { ∅ } ) ) ) ⊆ ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ) |
85 |
55 84
|
eqsstrid |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ⊆ ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ) |
86 |
|
ssfi |
⊢ ( ( ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ∈ Fin ∧ ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ⊆ ( ◡ ( 𝐴 ↾ 𝐽 ) “ ( V ∖ { 0 } ) ) ) → ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ∈ Fin ) |
87 |
51 85 86
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ∈ Fin ) |
88 |
|
oveq1 |
⊢ ( 𝑟 = ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) → ( 𝑟 supp ∅ ) = ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) supp ∅ ) ) |
89 |
88
|
eleq1d |
⊢ ( 𝑟 = ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) → ( ( 𝑟 supp ∅ ) ∈ Fin ↔ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) supp ∅ ) ∈ Fin ) ) |
90 |
89 6
|
elrab2 |
⊢ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ 𝐻 ↔ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∧ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) supp ∅ ) ∈ Fin ) ) |
91 |
|
zex |
⊢ ℤ ∈ V |
92 |
|
fex |
⊢ ( ( bits : ℤ ⟶ 𝒫 ℕ0 ∧ ℤ ∈ V ) → bits ∈ V ) |
93 |
62 91 92
|
mp2an |
⊢ bits ∈ V |
94 |
|
resexg |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐴 ↾ 𝐽 ) ∈ V ) |
95 |
|
coexg |
⊢ ( ( bits ∈ V ∧ ( 𝐴 ↾ 𝐽 ) ∈ V ) → ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ V ) |
96 |
93 94 95
|
sylancr |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ V ) |
97 |
|
0ex |
⊢ ∅ ∈ V |
98 |
|
suppimacnv |
⊢ ( ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ V ∧ ∅ ∈ V ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) supp ∅ ) = ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ) |
99 |
97 98
|
mpan2 |
⊢ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ V → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) supp ∅ ) = ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ) |
100 |
99
|
eleq1d |
⊢ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ V → ( ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) supp ∅ ) ∈ Fin ↔ ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ∈ Fin ) ) |
101 |
100
|
anbi2d |
⊢ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ V → ( ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∧ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) supp ∅ ) ∈ Fin ) ↔ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∧ ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ∈ Fin ) ) ) |
102 |
96 101
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∧ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) supp ∅ ) ∈ Fin ) ↔ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∧ ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ∈ Fin ) ) ) |
103 |
90 102
|
syl5bb |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ 𝐻 ↔ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∧ ( ◡ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) “ ( V ∖ { ∅ } ) ) ∈ Fin ) ) ) |
104 |
31 87 103
|
mpbir2and |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ 𝐻 ) |