Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
11 |
|
eulerpart.s |
⊢ 𝑆 = ( 𝑓 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ↦ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) ) |
12 |
|
simpl |
⊢ ( ( 𝑜 = 𝑞 ∧ 𝑘 ∈ ℕ ) → 𝑜 = 𝑞 ) |
13 |
12
|
fveq1d |
⊢ ( ( 𝑜 = 𝑞 ∧ 𝑘 ∈ ℕ ) → ( 𝑜 ‘ 𝑘 ) = ( 𝑞 ‘ 𝑘 ) ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝑜 = 𝑞 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) ) |
15 |
14
|
sumeq2dv |
⊢ ( 𝑜 = 𝑞 → Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑜 = 𝑞 → ( Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ↔ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
17 |
16
|
cbvrabv |
⊢ { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } = { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } |
18 |
17
|
a1i |
⊢ ( 𝑜 = 𝑞 → { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } = { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
19 |
18
|
reseq2d |
⊢ ( 𝑜 = 𝑞 → ( 𝐺 ↾ { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) = ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) ) |
20 |
|
eqidd |
⊢ ( 𝑜 = 𝑞 → { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } = { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
21 |
19 18 20
|
f1oeq123d |
⊢ ( 𝑜 = 𝑞 → ( ( 𝐺 ↾ { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ↔ ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑜 = 𝑞 → ( ( ⊤ → ( 𝐺 ↾ { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) ↔ ( ⊤ → ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) ) ) |
23 |
1 2 3 4 5 6 7 8 9 10
|
eulerpartgbij |
⊢ 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |
24 |
23
|
a1i |
⊢ ( ⊤ → 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑞 = 𝑜 → ( 𝐺 ‘ 𝑞 ) = ( 𝐺 ‘ 𝑜 ) ) |
26 |
|
reseq1 |
⊢ ( 𝑞 = 𝑜 → ( 𝑞 ↾ 𝐽 ) = ( 𝑜 ↾ 𝐽 ) ) |
27 |
26
|
coeq2d |
⊢ ( 𝑞 = 𝑜 → ( bits ∘ ( 𝑞 ↾ 𝐽 ) ) = ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝑞 = 𝑜 → ( 𝑀 ‘ ( bits ∘ ( 𝑞 ↾ 𝐽 ) ) ) = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
29 |
28
|
imaeq2d |
⊢ ( 𝑞 = 𝑜 → ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑞 ↾ 𝐽 ) ) ) ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝑞 = 𝑜 → ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑞 ↾ 𝐽 ) ) ) ) ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
31 |
25 30
|
eqeq12d |
⊢ ( 𝑞 = 𝑜 → ( ( 𝐺 ‘ 𝑞 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑞 ↾ 𝐽 ) ) ) ) ) ↔ ( 𝐺 ‘ 𝑜 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) ) |
32 |
1 2 3 4 5 6 7 8 9 10
|
eulerpartlemgv |
⊢ ( 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐺 ‘ 𝑞 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑞 ↾ 𝐽 ) ) ) ) ) ) |
33 |
31 32
|
vtoclga |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐺 ‘ 𝑜 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
34 |
33
|
3ad2ant2 |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → ( 𝐺 ‘ 𝑜 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
35 |
|
simp3 |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
36 |
34 35
|
eqtr4d |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → ( 𝐺 ‘ 𝑜 ) = 𝑑 ) |
37 |
36
|
fveq1d |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → ( ( 𝐺 ‘ 𝑜 ) ‘ 𝑘 ) = ( 𝑑 ‘ 𝑘 ) ) |
38 |
37
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → ( ( ( 𝐺 ‘ 𝑜 ) ‘ 𝑘 ) · 𝑘 ) = ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) ) |
39 |
38
|
sumeq2sdv |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐺 ‘ 𝑜 ) ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) ) |
40 |
25
|
fveq2d |
⊢ ( 𝑞 = 𝑜 → ( 𝑆 ‘ ( 𝐺 ‘ 𝑞 ) ) = ( 𝑆 ‘ ( 𝐺 ‘ 𝑜 ) ) ) |
41 |
|
fveq2 |
⊢ ( 𝑞 = 𝑜 → ( 𝑆 ‘ 𝑞 ) = ( 𝑆 ‘ 𝑜 ) ) |
42 |
40 41
|
eqeq12d |
⊢ ( 𝑞 = 𝑜 → ( ( 𝑆 ‘ ( 𝐺 ‘ 𝑞 ) ) = ( 𝑆 ‘ 𝑞 ) ↔ ( 𝑆 ‘ ( 𝐺 ‘ 𝑜 ) ) = ( 𝑆 ‘ 𝑜 ) ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11
|
eulerpartlemgs2 |
⊢ ( 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑆 ‘ ( 𝐺 ‘ 𝑞 ) ) = ( 𝑆 ‘ 𝑞 ) ) |
44 |
42 43
|
vtoclga |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑆 ‘ ( 𝐺 ‘ 𝑜 ) ) = ( 𝑆 ‘ 𝑜 ) ) |
45 |
|
nn0ex |
⊢ ℕ0 ∈ V |
46 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
47 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
48 |
|
prssi |
⊢ ( ( 0 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → { 0 , 1 } ⊆ ℕ0 ) |
49 |
46 47 48
|
mp2an |
⊢ { 0 , 1 } ⊆ ℕ0 |
50 |
|
mapss |
⊢ ( ( ℕ0 ∈ V ∧ { 0 , 1 } ⊆ ℕ0 ) → ( { 0 , 1 } ↑m ℕ ) ⊆ ( ℕ0 ↑m ℕ ) ) |
51 |
45 49 50
|
mp2an |
⊢ ( { 0 , 1 } ↑m ℕ ) ⊆ ( ℕ0 ↑m ℕ ) |
52 |
|
ssrin |
⊢ ( ( { 0 , 1 } ↑m ℕ ) ⊆ ( ℕ0 ↑m ℕ ) → ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ⊆ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ) |
53 |
51 52
|
ax-mp |
⊢ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ⊆ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) |
54 |
|
f1of |
⊢ ( 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) → 𝐺 : ( 𝑇 ∩ 𝑅 ) ⟶ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
55 |
23 54
|
ax-mp |
⊢ 𝐺 : ( 𝑇 ∩ 𝑅 ) ⟶ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |
56 |
55
|
ffvelrni |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐺 ‘ 𝑜 ) ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
57 |
53 56
|
sselid |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐺 ‘ 𝑜 ) ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ) |
58 |
8 11
|
eulerpartlemsv1 |
⊢ ( ( 𝐺 ‘ 𝑜 ) ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ ( 𝐺 ‘ 𝑜 ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐺 ‘ 𝑜 ) ‘ 𝑘 ) · 𝑘 ) ) |
59 |
57 58
|
syl |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑆 ‘ ( 𝐺 ‘ 𝑜 ) ) = Σ 𝑘 ∈ ℕ ( ( ( 𝐺 ‘ 𝑜 ) ‘ 𝑘 ) · 𝑘 ) ) |
60 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝑜 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝑜 “ ℕ ) ∈ Fin ∧ ( ◡ 𝑜 “ ℕ ) ⊆ 𝐽 ) ) |
61 |
60
|
simp1bi |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → 𝑜 ∈ ( ℕ0 ↑m ℕ ) ) |
62 |
|
inss2 |
⊢ ( 𝑇 ∩ 𝑅 ) ⊆ 𝑅 |
63 |
62
|
sseli |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → 𝑜 ∈ 𝑅 ) |
64 |
61 63
|
elind |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → 𝑜 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) ) |
65 |
8 11
|
eulerpartlemsv1 |
⊢ ( 𝑜 ∈ ( ( ℕ0 ↑m ℕ ) ∩ 𝑅 ) → ( 𝑆 ‘ 𝑜 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) ) |
66 |
64 65
|
syl |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑆 ‘ 𝑜 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) ) |
67 |
44 59 66
|
3eqtr3d |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐺 ‘ 𝑜 ) ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) ) |
68 |
67
|
3ad2ant2 |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → Σ 𝑘 ∈ ℕ ( ( ( 𝐺 ‘ 𝑜 ) ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) ) |
69 |
39 68
|
eqtr3d |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) ) |
70 |
69
|
eqeq1d |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑑 = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → ( Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ↔ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
71 |
10 24 70
|
f1oresrab |
⊢ ( ⊤ → ( 𝐺 ↾ { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑜 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
72 |
22 71
|
chvarvv |
⊢ ( ⊤ → ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
73 |
|
cnveq |
⊢ ( 𝑔 = 𝑞 → ◡ 𝑔 = ◡ 𝑞 ) |
74 |
73
|
imaeq1d |
⊢ ( 𝑔 = 𝑞 → ( ◡ 𝑔 “ ℕ ) = ( ◡ 𝑞 “ ℕ ) ) |
75 |
74
|
raleqdv |
⊢ ( 𝑔 = 𝑞 → ( ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
76 |
75
|
cbvrabv |
⊢ { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } = { 𝑞 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 } |
77 |
|
nfrab1 |
⊢ Ⅎ 𝑞 { 𝑞 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 } |
78 |
|
nfrab1 |
⊢ Ⅎ 𝑞 { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } |
79 |
|
df-3an |
⊢ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
80 |
79
|
anbi1i |
⊢ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
81 |
1
|
eulerpartleme |
⊢ ( 𝑞 ∈ 𝑃 ↔ ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
82 |
81
|
anbi1i |
⊢ ( ( 𝑞 ∈ 𝑃 ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
83 |
|
an32 |
⊢ ( ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
84 |
80 82 83
|
3bitr4i |
⊢ ( ( 𝑞 ∈ 𝑃 ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
85 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝑞 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ) ) |
86 |
|
nnex |
⊢ ℕ ∈ V |
87 |
45 86
|
elmap |
⊢ ( 𝑞 ∈ ( ℕ0 ↑m ℕ ) ↔ 𝑞 : ℕ ⟶ ℕ0 ) |
88 |
87
|
3anbi1i |
⊢ ( ( 𝑞 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ) ↔ ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ) ) |
89 |
85 88
|
bitri |
⊢ ( 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ) ) |
90 |
|
df-3an |
⊢ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ∧ ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ) ) |
91 |
|
dfss3 |
⊢ ( ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ↔ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) 𝑛 ∈ 𝐽 ) |
92 |
|
breq2 |
⊢ ( 𝑧 = 𝑛 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑛 ) ) |
93 |
92
|
notbid |
⊢ ( 𝑧 = 𝑛 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛 ) ) |
94 |
93 4
|
elrab2 |
⊢ ( 𝑛 ∈ 𝐽 ↔ ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) ) |
95 |
94
|
ralbii |
⊢ ( ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) 𝑛 ∈ 𝐽 ↔ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) ) |
96 |
|
r19.26 |
⊢ ( ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
97 |
91 95 96
|
3bitri |
⊢ ( ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ↔ ( ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
98 |
|
cnvimass |
⊢ ( ◡ 𝑞 “ ℕ ) ⊆ dom 𝑞 |
99 |
|
fdm |
⊢ ( 𝑞 : ℕ ⟶ ℕ0 → dom 𝑞 = ℕ ) |
100 |
98 99
|
sseqtrid |
⊢ ( 𝑞 : ℕ ⟶ ℕ0 → ( ◡ 𝑞 “ ℕ ) ⊆ ℕ ) |
101 |
|
dfss3 |
⊢ ( ( ◡ 𝑞 “ ℕ ) ⊆ ℕ ↔ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) 𝑛 ∈ ℕ ) |
102 |
100 101
|
sylib |
⊢ ( 𝑞 : ℕ ⟶ ℕ0 → ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) 𝑛 ∈ ℕ ) |
103 |
102
|
biantrurd |
⊢ ( 𝑞 : ℕ ⟶ ℕ0 → ( ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ( ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) 𝑛 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) ) |
104 |
97 103
|
bitr4id |
⊢ ( 𝑞 : ℕ ⟶ ℕ0 → ( ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ↔ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
105 |
104
|
adantr |
⊢ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) → ( ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ↔ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
106 |
105
|
pm5.32i |
⊢ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ ( ◡ 𝑞 “ ℕ ) ⊆ 𝐽 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
107 |
89 90 106
|
3bitri |
⊢ ( 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
108 |
107
|
anbi1i |
⊢ ( ( 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( ( 𝑞 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑞 “ ℕ ) ∈ Fin ) ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
109 |
84 108
|
bitr4i |
⊢ ( ( 𝑞 ∈ 𝑃 ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ↔ ( 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
110 |
|
rabid |
⊢ ( 𝑞 ∈ { 𝑞 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 } ↔ ( 𝑞 ∈ 𝑃 ∧ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 ) ) |
111 |
|
rabid |
⊢ ( 𝑞 ∈ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ↔ ( 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
112 |
109 110 111
|
3bitr4i |
⊢ ( 𝑞 ∈ { 𝑞 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 } ↔ 𝑞 ∈ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
113 |
77 78 112
|
eqri |
⊢ { 𝑞 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑞 “ ℕ ) ¬ 2 ∥ 𝑛 } = { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } |
114 |
2 76 113
|
3eqtri |
⊢ 𝑂 = { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } |
115 |
114
|
reseq2i |
⊢ ( 𝐺 ↾ 𝑂 ) = ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
116 |
115
|
a1i |
⊢ ( ⊤ → ( 𝐺 ↾ 𝑂 ) = ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) ) |
117 |
114
|
a1i |
⊢ ( ⊤ → 𝑂 = { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
118 |
|
nfcv |
⊢ Ⅎ 𝑑 𝐷 |
119 |
|
nfrab1 |
⊢ Ⅎ 𝑑 { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } |
120 |
|
fnima |
⊢ ( 𝑑 Fn ℕ → ( 𝑑 “ ℕ ) = ran 𝑑 ) |
121 |
120
|
sseq1d |
⊢ ( 𝑑 Fn ℕ → ( ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ↔ ran 𝑑 ⊆ { 0 , 1 } ) ) |
122 |
121
|
anbi2d |
⊢ ( 𝑑 Fn ℕ → ( ( ran 𝑑 ⊆ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ran 𝑑 ⊆ ℕ0 ∧ ran 𝑑 ⊆ { 0 , 1 } ) ) ) |
123 |
|
sstr |
⊢ ( ( ran 𝑑 ⊆ { 0 , 1 } ∧ { 0 , 1 } ⊆ ℕ0 ) → ran 𝑑 ⊆ ℕ0 ) |
124 |
49 123
|
mpan2 |
⊢ ( ran 𝑑 ⊆ { 0 , 1 } → ran 𝑑 ⊆ ℕ0 ) |
125 |
124
|
pm4.71ri |
⊢ ( ran 𝑑 ⊆ { 0 , 1 } ↔ ( ran 𝑑 ⊆ ℕ0 ∧ ran 𝑑 ⊆ { 0 , 1 } ) ) |
126 |
122 125
|
bitr4di |
⊢ ( 𝑑 Fn ℕ → ( ( ran 𝑑 ⊆ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ran 𝑑 ⊆ { 0 , 1 } ) ) |
127 |
126
|
pm5.32i |
⊢ ( ( 𝑑 Fn ℕ ∧ ( ran 𝑑 ⊆ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) ↔ ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ { 0 , 1 } ) ) |
128 |
|
anass |
⊢ ( ( ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( 𝑑 Fn ℕ ∧ ( ran 𝑑 ⊆ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) ) |
129 |
|
df-f |
⊢ ( 𝑑 : ℕ ⟶ { 0 , 1 } ↔ ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ { 0 , 1 } ) ) |
130 |
127 128 129
|
3bitr4ri |
⊢ ( 𝑑 : ℕ ⟶ { 0 , 1 } ↔ ( ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) |
131 |
|
prex |
⊢ { 0 , 1 } ∈ V |
132 |
131 86
|
elmap |
⊢ ( 𝑑 ∈ ( { 0 , 1 } ↑m ℕ ) ↔ 𝑑 : ℕ ⟶ { 0 , 1 } ) |
133 |
|
df-f |
⊢ ( 𝑑 : ℕ ⟶ ℕ0 ↔ ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0 ) ) |
134 |
133
|
anbi1i |
⊢ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( 𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) |
135 |
130 132 134
|
3bitr4i |
⊢ ( 𝑑 ∈ ( { 0 , 1 } ↑m ℕ ) ↔ ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) |
136 |
|
vex |
⊢ 𝑑 ∈ V |
137 |
|
cnveq |
⊢ ( 𝑓 = 𝑑 → ◡ 𝑓 = ◡ 𝑑 ) |
138 |
137
|
imaeq1d |
⊢ ( 𝑓 = 𝑑 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑑 “ ℕ ) ) |
139 |
138
|
eleq1d |
⊢ ( 𝑓 = 𝑑 → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ) |
140 |
136 139 8
|
elab2 |
⊢ ( 𝑑 ∈ 𝑅 ↔ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) |
141 |
135 140
|
anbi12i |
⊢ ( ( 𝑑 ∈ ( { 0 , 1 } ↑m ℕ ) ∧ 𝑑 ∈ 𝑅 ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ) |
142 |
|
elin |
⊢ ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ↔ ( 𝑑 ∈ ( { 0 , 1 } ↑m ℕ ) ∧ 𝑑 ∈ 𝑅 ) ) |
143 |
|
an32 |
⊢ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ) |
144 |
141 142 143
|
3bitr4i |
⊢ ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) |
145 |
144
|
anbi1i |
⊢ ( ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
146 |
1
|
eulerpartleme |
⊢ ( 𝑑 ∈ 𝑃 ↔ ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
147 |
146
|
anbi1i |
⊢ ( ( 𝑑 ∈ 𝑃 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) |
148 |
|
df-3an |
⊢ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
149 |
148
|
anbi1i |
⊢ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) |
150 |
|
an32 |
⊢ ( ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
151 |
147 149 150
|
3bitri |
⊢ ( ( 𝑑 ∈ 𝑃 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ↔ ( ( ( 𝑑 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑑 “ ℕ ) ∈ Fin ) ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
152 |
145 151
|
bitr4i |
⊢ ( ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ↔ ( 𝑑 ∈ 𝑃 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) |
153 |
|
rabid |
⊢ ( 𝑑 ∈ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ↔ ( 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∧ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
154 |
1 2 3
|
eulerpartlemd |
⊢ ( 𝑑 ∈ 𝐷 ↔ ( 𝑑 ∈ 𝑃 ∧ ( 𝑑 “ ℕ ) ⊆ { 0 , 1 } ) ) |
155 |
152 153 154
|
3bitr4ri |
⊢ ( 𝑑 ∈ 𝐷 ↔ 𝑑 ∈ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
156 |
118 119 155
|
eqri |
⊢ 𝐷 = { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } |
157 |
156
|
a1i |
⊢ ( ⊤ → 𝐷 = { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) |
158 |
116 117 157
|
f1oeq123d |
⊢ ( ⊤ → ( ( 𝐺 ↾ 𝑂 ) : 𝑂 –1-1-onto→ 𝐷 ↔ ( 𝐺 ↾ { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) : { 𝑞 ∈ ( 𝑇 ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑞 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } –1-1-onto→ { 𝑑 ∈ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∣ Σ 𝑘 ∈ ℕ ( ( 𝑑 ‘ 𝑘 ) · 𝑘 ) = 𝑁 } ) ) |
159 |
72 158
|
mpbird |
⊢ ( ⊤ → ( 𝐺 ↾ 𝑂 ) : 𝑂 –1-1-onto→ 𝐷 ) |
160 |
159
|
mptru |
⊢ ( 𝐺 ↾ 𝑂 ) : 𝑂 –1-1-onto→ 𝐷 |